-
Notifications
You must be signed in to change notification settings - Fork 16
/
normal.l2.cluster.Rd
55 lines (55 loc) · 1.93 KB
/
normal.l2.cluster.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
\name{normal.l2.cluster}
\alias{normal.l2.cluster}
\docType{data}
\title{
Clustering of some normal data in 2d with the l2 clusterpath
}
\description{
The l2 clustering algorithm from the clusterpath package was applied to
some randomly generated data in 2 dimensions, and the solutions found
using the descent algorithm are stored in this data frame.
}
\usage{data(normal.l2.cluster)}
\format{
The format is:
List of 2
$ pts :'data.frame': 320 obs. of 3 variables:
..$ class: Factor w/ 8 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
..$ x : num [1:320] -2.73 -3.63 -2.13 -1.27 -2.98 ...
..$ y : num [1:320] -3.89 -3.43 -3.42 -3.17 -2.75 ...
$ path:Classes 'l2', 'clusterpath' and 'data.frame': 21760 obs. of 7 variables:
..$ x : num [1:21760] -2.73 -3.63 -2.13 -1.27 -2.98 ...
..$ y : num [1:21760] -3.89 -3.43 -3.42 -3.17 -2.75 ...
..$ lambda: num [1:21760] 0 0 0 0 0 0 0 0 0 0 ...
..$ row : Factor w/ 320 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
..$ gamma : Factor w/ 1 level "0.1": 1 1 1 1 1 1 1 1 1 1 ...
..$ norm : Factor w/ 1 level "2": 1 1 1 1 1 1 1 1 1 1 ...
..$ solver: Factor w/ 1 level "descent.nocheck": 1 1 1 1 1 1 1 1 1 1 ...
..- attr(*, "data")= num [1:320, 1:2] -2.73 -3.63 -2.13 -1.27 -2.98 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
.. .. ..$ : chr [1:2] "x" "y"
..- attr(*, "alphacolnames")= chr [1:2] "x" "y"
..- attr(*, "weight.pts")= num [1:320, 1:2] -2.73 -3.63 -2.13 -1.27 -2.98 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
.. .. ..$ : chr [1:2] "x" "y"
}
\source{
clusterpath package
}
\references{
clusterpath article
}
\examples{
data(normal.l2.cluster)
if(require(ggplot2)){
p <- ggplot(normal.l2.cluster$path,aes(x,y))+
geom_path(aes(group=row),colour="grey")+
geom_point(aes(size=lambda),colour="grey")+
geom_point(aes(colour=class),data=normal.l2.cluster$pts)+
coord_equal()
print(direct.label(p))
}
}
\keyword{datasets}