-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathmodel.py
192 lines (159 loc) · 7.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import tensorflow as tf
import prettytensor as pt
import numpy as np
import custom_ops
from custom_ops import leaky_rectify
import input
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('model', 'default',
'Only default supported currently.')
tf.app.flags.DEFINE_integer('gen_fc_layers', 4,
'Number of fully connected layers in the generator.')
tf.app.flags.DEFINE_integer('gen_fc_size', 1024,
'Number of units to use in generator fully connected layers.')
tf.app.flags.DEFINE_integer('discrim_fc_layers', 3,
'Number of fully connected layers in the discriminator.')
tf.app.flags.DEFINE_integer('discrim_fc_size', 1024,
'Number of units to use in discriminator fully connected layers.')
tf.app.flags.DEFINE_integer('gen_filter_base', 64,
'Number of filters to use in lowest generator conv layer.')
tf.app.flags.DEFINE_integer('discrim_filter_base', 64,
'Number of filters to use in lowest discriminator conv layer.')
tf.app.flags.DEFINE_integer('z_size', 100,
'Size of the input distribution to the generator.')
tf.app.flags.DEFINE_float('keep_prob', 0.5,
'Probability of keeping values in dropout layers.')
# configuration options
optimizer = lambda lr: tf.train.AdamOptimizer(lr, beta1=0.5)
gen_optimizer = lambda: optimizer(FLAGS.learning_rate)
discrim_optimizer = lambda: optimizer(FLAGS.learning_rate)
gen_activation_fn = tf.nn.relu
discrim_activation_fn = leaky_rectify
def _activation_summary(x):
tensor_name = x.op.name
tf.histogram_summary(tensor_name + '/activations', x)
tf.scalar_summary(tensor_name + '/sparsity', tf.nn.zero_fraction(x))
'''
def reshape_for_sequence(tensor):
shape = tensor.get_shape().as_list()
height = shape[1]
width = shape[2]
depth = shape[3]
result = (
pt.wrap(tensor)
.apply(tf.transpose, [0, 3, 2, 1])
.reshape([FLAGS.batch_size, TIME_STEPS, -1])
.apply(tf.transpose, [1, 0, 2])
.reshape([-1, height*width*depth/TIME_STEPS])
)
return result
def reshape_from_sequence(tensor, side, depth):
result = (
pt.wrap(tensor)
.reshape([TIME_STEPS, FLAGS.batch_size, -1])
.apply(tf.transpose, [1, 0, 2])
.reshape([FLAGS.batch_size, depth, side, side])
.apply(tf.transpose, [0, 3, 2, 1])
)
return result
'''
def generator_template():
starting_size = int(input.IMAGE_SIZE / (2 ** input.NUM_LEVELS))
num_filters = FLAGS.gen_filter_base * (2 ** input.NUM_LEVELS)
with tf.variable_scope('generator'):
tmp = pt.template('input')
for i in xrange(FLAGS.gen_fc_layers - 1):
tmp = tmp.fully_connected(FLAGS.gen_fc_size).apply(gen_activation_fn)
tmp = tmp.fully_connected(starting_size*starting_size*num_filters/2).apply(gen_activation_fn)
features = tmp
tmp = tmp.reshape([FLAGS.batch_size, starting_size, starting_size, num_filters/2])
for i in xrange(input.NUM_LEVELS):
num_filters = int(num_filters / 2)
tmp = (
tmp
.upsample_conv(5, num_filters)
#.custom_deconv2d(num_filters)
.batch_normalize()
.apply(gen_activation_fn)
)
tmp = tmp.conv2d(5, input.CHANNELS).apply(tf.nn.tanh)
output = tmp
z_prediction = (
features
.fully_connected(FLAGS.gen_fc_size)
.apply(gen_activation_fn)
.fully_connected(FLAGS.gen_fc_size)
.apply(gen_activation_fn)
.fully_connected(FLAGS.gen_fc_size)
.apply(gen_activation_fn)
.fully_connected(FLAGS.z_size)
)
return output, z_prediction
def discriminator_template():
num_filters = FLAGS.discrim_filter_base
with tf.variable_scope('discriminator'):
tmp = pt.template('input')
for i in xrange(input.NUM_LEVELS):
if i > 0:
tmp = tmp.dropout(FLAGS.keep_prob)
tmp = tmp.conv2d(5, num_filters)
if i > 0:
tmp = tmp.batch_normalize()
tmp = tmp.apply(discrim_activation_fn).max_pool(2, 2)
num_filters *= 2
tmp = tmp.flatten()
features = tmp
minibatch_discrim = features.minibatch_discrimination(100)
for i in xrange(FLAGS.discrim_fc_layers-1):
tmp = tmp.fully_connected(FLAGS.discrim_fc_size).apply(discrim_activation_fn)
tmp = tmp.concat(1, [minibatch_discrim]).fully_connected(1)
output = tmp
return output
def losses(real_images):
# get z
z = tf.truncated_normal([FLAGS.batch_size, FLAGS.z_size], stddev=1)
#z = tf.random_uniform([FLAGS.batch_size, FLAGS.z_size], minval=-1, maxval=1)
d_template = discriminator_template()
g_template = generator_template()
gen_images, z_prediction = pt.construct_all(g_template, input=z)
tf.image_summary('generated_images', gen_images, max_images=FLAGS.batch_size, name='generated_images_summary')
real_logits = d_template.construct(input=real_images)
fake_logits = d_template.construct(input=gen_images)
real_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(real_logits, tf.ones_like(real_logits)))
fake_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(fake_logits, tf.zeros_like(fake_logits)))
discriminator_loss = tf.add(real_loss, fake_loss, name='discriminator_loss')
generator_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(fake_logits, tf.ones_like(fake_logits)), name='generator_loss')
z_prediction_loss = tf.reduce_mean(tf.square(z - z_prediction), name='z_prediction_loss')
tf.add_to_collection('losses', generator_loss)
tf.add_to_collection('losses', discriminator_loss)
tf.add_to_collection('losses', z_prediction_loss)
return generator_loss, discriminator_loss, z_prediction_loss
def train(loss, global_step, net=None):
if net == 'generator':
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
opt = gen_optimizer()
elif net == 'discriminator':
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator')
opt = discrim_optimizer()
elif net == 'z_predictor':
variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
opt = gen_optimizer()
else:
raise RuntimeError('Net to train must be one of generator, discriminator, or z_predictor.')
# Compute gradients.
grads = opt.compute_gradients(loss, var_list=variables)
# Apply gradients.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step, name='train_'+net)
# Add histograms for trainable variables.
#for var in tf.trainable_variables():
# tf.histogram_summary(var.op.name, var)
# Add histograms for gradients.
#for grad, var in discrim_grads + gen_grads:
# if grad is not None:
# tf.histogram_summary(var.op.name + '/gradients', grad)
return apply_gradient_op