-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_gesture.py
63 lines (55 loc) · 2.06 KB
/
detect_gesture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import cv2
import mediapipe as mp
from model import KeyPointClassifier
import landmark_utils as u
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_hands = mp.solutions.hands
kpclf = KeyPointClassifier()
gestures = {
0: "Open Hand",
1: "Thumb up",
2: "OK",
3: "Peace",
4: "No Hand Detected"
}
# For webcam input:
cap = cv2.VideoCapture(0)
with mp_hands.Hands(
model_complexity=0,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as hands:
while cap.isOpened():
success, image = cap.read()
if not success:
print("Ignoring empty camera frame.")
# If loading a video, use 'break' instead of 'continue'.
continue
# To improve performance, optionally mark the image as not writeable to
# pass by reference.
image.flags.writeable = False
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = hands.process(image)
# Draw the hand annotations on the image.
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
gesture_index = 4
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
landmark_list = u.calc_landmark_list(image, hand_landmarks)
keypoints = u.pre_process_landmark(landmark_list)
gesture_index = kpclf(keypoints)
mp_drawing.draw_landmarks(
image,
hand_landmarks,
mp_hands.HAND_CONNECTIONS,
mp_drawing_styles.get_default_hand_landmarks_style(),
mp_drawing_styles.get_default_hand_connections_style())
# Flip the image horizontally for a selfie-view display.
final = cv2.flip(image, 1)
cv2.putText(final, gestures[gesture_index],
(10, 30), cv2.FONT_HERSHEY_DUPLEX, 1, 255)
cv2.imshow('MediaPipe Hands', final)
if cv2.waitKey(5) & 0xFF == 27:
break
cap.release()