forked from sagrawal87/ABE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathac17.py
242 lines (200 loc) · 7.51 KB
/
ac17.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
'''
Shashank Agrawal, Melissa Chase
| From: "FAME: Fast Attribute-based Message Encryption"
| Published in: 2017
| Available from: https://eprint.iacr.org/2017/807
| Notes: Implemented the scheme in Section 3
| Security Assumption: a variant of k-linear, k>=2
|
| type: ciphertext-policy attribute-based encryption
| setting: Pairing
:Authors: Shashank Agrawal
:Date: 05/2016
'''
from charm.toolbox.pairinggroup import PairingGroup, ZR, G1, G2, GT, pair
from charm.toolbox.ABEnc import ABEnc
from msp import MSP
debug = False
class AC17CPABE(ABEnc):
def __init__(self, group_obj, assump_size, verbose=False):
ABEnc.__init__(self)
self.group = group_obj
self.assump_size = assump_size # size of linear assumption, at least 2
self.util = MSP(self.group, verbose)
def setup(self):
"""
Generates public key and master secret key.
"""
if debug:
print('\nSetup algorithm:\n')
# generate two instances of the k-linear assumption
A = []
B = []
for i in range(self.assump_size):
A.append(self.group.random(ZR))
B.append(self.group.random(ZR)) # note that A, B are vectors here
# vector
k = []
for i in range(self.assump_size + 1):
k.append(self.group.random(ZR))
# pick a random element from the two source groups and pair them
g = self.group.random(G1)
h = self.group.random(G2)
e_gh = pair(g, h)
# now compute various parts of the public parameters
# compute the [A]_2 term
h_A = []
for i in range(self.assump_size):
h_A.append(h ** A[i])
h_A.append(h)
# compute the e([k]_1, [A]_2) term
g_k = []
for i in range(self.assump_size + 1):
g_k.append(g ** k[i])
e_gh_kA = []
for i in range(self.assump_size):
e_gh_kA.append(e_gh ** (k[i] * A[i] + k[self.assump_size]))
# the public key
pk = {'h_A': h_A, 'e_gh_kA': e_gh_kA}
# the master secret key
msk = {'g': g, 'h': h, 'g_k': g_k, 'A': A, 'B': B}
return pk, msk
def keygen(self, pk, msk, attr_list):
"""
Generate a key for a list of attributes.
"""
if debug:
print('\nKey generation algorithm:\n')
# pick randomness
r = []
sum = 0
for i in range(self.assump_size):
rand = self.group.random(ZR)
r.append(rand)
sum += rand
# compute the [Br]_2 term
# first compute just Br as it will be used later too
Br = []
for i in range(self.assump_size):
Br.append(msk['B'][i] * r[i])
Br.append(sum)
# now compute [Br]_2
K_0 = []
for i in range(self.assump_size + 1):
K_0.append(msk['h'] ** Br[i])
# compute [W_1 Br]_1, ...
K = {}
A = msk['A']
g = msk['g']
for attr in attr_list:
key = []
sigma_attr = self.group.random(ZR)
for t in range(self.assump_size):
prod = 1
a_t = A[t]
for l in range(self.assump_size + 1):
input_for_hash = attr + str(l) + str(t)
prod *= (self.group.hash(input_for_hash, G1) ** (Br[l]/a_t))
prod *= (g ** (sigma_attr/a_t))
key.append(prod)
key.append(g ** (-sigma_attr))
K[attr] = key
# compute [k + VBr]_1
Kp = []
g_k = msk['g_k']
sigma = self.group.random(ZR)
for t in range(self.assump_size):
prod = g_k[t]
a_t = A[t]
for l in range(self.assump_size + 1):
input_for_hash = '01' + str(l) + str(t)
prod *= (self.group.hash(input_for_hash, G1) ** (Br[l] / a_t))
prod *= (g ** (sigma / a_t))
Kp.append(prod)
Kp.append(g_k[self.assump_size] * (g ** (-sigma)))
return {'attr_list': attr_list, 'K_0': K_0, 'K': K, 'Kp': Kp}
def encrypt(self, pk, msg, policy_str):
"""
Encrypt a message msg under a policy string.
"""
if debug:
print('\nEncryption algorithm:\n')
policy = self.util.createPolicy(policy_str)
mono_span_prog = self.util.convert_policy_to_msp(policy)
num_cols = self.util.len_longest_row
# pick randomness
s = []
sum = 0
for i in range(self.assump_size):
rand = self.group.random(ZR)
s.append(rand)
sum += rand
# compute the [As]_2 term
C_0 = []
h_A = pk['h_A']
for i in range(self.assump_size):
C_0.append(h_A[i] ** s[i])
C_0.append(h_A[self.assump_size] ** sum)
# compute the [(V^T As||U^T_2 As||...) M^T_i + W^T_i As]_1 terms
# pre-compute hashes
hash_table = []
for j in range(num_cols):
x = []
input_for_hash1 = '0' + str(j + 1)
for l in range(self.assump_size + 1):
y = []
input_for_hash2 = input_for_hash1 + str(l)
for t in range(self.assump_size):
input_for_hash3 = input_for_hash2 + str(t)
hashed_value = self.group.hash(input_for_hash3, G1)
y.append(hashed_value)
# if debug: print ('Hash of', i+2, ',', j2, ',', j1, 'is', hashed_value)
x.append(y)
hash_table.append(x)
C = {}
for attr, row in mono_span_prog.items():
ct = []
attr_stripped = self.util.strip_index(attr) # no need, re-use not allowed
for l in range(self.assump_size + 1):
prod = 1
cols = len(row)
for t in range(self.assump_size):
input_for_hash = attr_stripped + str(l) + str(t)
prod1 = self.group.hash(input_for_hash, G1)
for j in range(cols):
# input_for_hash = '0' + str(j+1) + str(l) + str(t)
prod1 *= (hash_table[j][l][t] ** row[j])
prod *= (prod1 ** s[t])
ct.append(prod)
C[attr] = ct
# compute the e(g, h)^(k^T As) . m term
Cp = 1
for i in range(self.assump_size):
Cp = Cp * (pk['e_gh_kA'][i] ** s[i])
Cp = Cp * msg
return {'policy': policy, 'C_0': C_0, 'C': C, 'Cp': Cp}
def decrypt(self, pk, ctxt, key):
"""
Decrypt ciphertext ctxt with key key.
"""
if debug:
print('\nDecryption algorithm:\n')
nodes = self.util.prune(ctxt['policy'], key['attr_list'])
if not nodes:
print ("Policy not satisfied.")
return None
prod1_GT = 1
prod2_GT = 1
for i in range(self.assump_size + 1):
prod_H = 1
prod_G = 1
for node in nodes:
attr = node.getAttributeAndIndex()
attr_stripped = self.util.strip_index(attr) # no need, re-use not allowed
# prod_H *= key['K'][attr_stripped][i] ** coeff[attr]
# prod_G *= ctxt['C'][attr][i] ** coeff[attr]
prod_H *= key['K'][attr_stripped][i]
prod_G *= ctxt['C'][attr][i]
prod1_GT *= pair(key['Kp'][i] * prod_H, ctxt['C_0'][i])
prod2_GT *= pair(prod_G, key['K_0'][i])
return ctxt['Cp'] * prod2_GT / prod1_GT