-
Notifications
You must be signed in to change notification settings - Fork 192
/
train_stock_lstm.py
270 lines (224 loc) · 10.3 KB
/
train_stock_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import pandas_datareader.data as pdr_data
import numpy as np
import time
import os
import sys
from collections import deque
import tensorflow as tf
from tensorflow.models.rnn import rnn
from tensorflow.models.rnn import rnn_cell
from tensorflow.models.rnn import seq2seq
import config as c
"""
Adapted from Google's PTB word prediction TensorFlow tutorial.
Copyright 2016 Tencia Lee
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
def get_data():
'''
If filename exists, loads data, otherwise downloads and saves data
from Yahoo Finance
Returns:
- a list of arrays of close-to-close percentage returns, normalized by running
stdev calculated over last c.normalize_std_len days
'''
def download_data():
from datetime import timedelta, datetime
# find date range for the split train, val, test (0.8, 0.1, 0.1 of total days)
print('Downloading data for dates {} - {}'.format(
datetime.strftime(c.start, "%Y-%m-%d"),
datetime.strftime(c.end, "%Y-%m-%d")))
split = [0.8, 0.1, 0.1]
cumusplit = [np.sum(split[:i]) for i,s in enumerate(split)]
segment_start_dates = [c.start + timedelta(
days = int((c.end - c.start).days * interv)) for interv in cumusplit][::-1]
stocks_list = map(lambda l: l.strip(), open(c.names_file, 'r').readlines())
by_stock = dict((s, pdr_data.DataReader(s, 'yahoo', c.start, c.end))
for s in stocks_list)
seq = [[],[],[]]
for stock in by_stock:
lastAc = -1
daily_returns = deque(maxlen=c.normalize_std_len)
for rec_date in (c.start + timedelta(days=n) for n in xrange((c.end-c.start).days)):
idx = next(i for i,d in enumerate(segment_start_dates) if rec_date >= d)
try:
d = rec_date.strftime("%Y-%m-%d")
ac = by_stock[stock].ix[d]['Adj Close']
daily_return = (ac - lastAc)/lastAc
if len(daily_returns) == daily_returns.maxlen:
seq[idx].append(daily_return/np.std(daily_returns))
daily_returns.append(daily_return)
lastAc = ac
except KeyError:
pass
return [np.asarray(dat, dtype=np.float32) for dat in seq][::-1]
if not os.path.exists(c.save_file):
datasets = download_data()
print('Saving in {}'.format(c.save_file))
np.savez(c.save_file, *datasets)
else:
with np.load(c.save_file) as file_load:
datasets = [file_load['arr_%d' % i] for i in range(len(file_load.files))]
return datasets
def seq_iterator(raw_data, batch_size, num_steps):
"""
Iterate on the raw return sequence data.
Args:
- raw_data: array
- batch_size: int, the batch size.
- num_steps: int, the number of unrolls.
Yields:
- Pairs of the batched data, each a matrix of shape [batch_size, num_steps].
The second element of the tuple is the same data time-shifted to the
right by one.
Raises:
- ValueError: if batch_size or num_steps are too high.
"""
raw_data = np.array(raw_data, dtype=np.float32)
data_len = len(raw_data)
batch_len = data_len // batch_size
data = np.zeros([batch_size, batch_len], dtype=np.float32)
for i in range(batch_size):
data[i] = raw_data[batch_len * i:batch_len * (i + 1)]
epoch_size = (batch_len - 1) // num_steps
if epoch_size == 0:
raise ValueError("epoch_size == 0, decrease batch_size or num_steps")
for i in range(epoch_size):
x = data[:, i*num_steps:(i+1)*num_steps]
y = data[:, i*num_steps+1:(i+1)*num_steps+1]
yield (x, y)
class StockLSTM(object):
"""
This model predicts a 1D sequence of real numbers (here representing daily stock adjusted
returns normalized by running fixed-length standard deviation) using an LSTM.
It is regularized using the method in [Zaremba et al 2015]
http://arxiv.org/pdf/1409.2329v5.pdf
"""
def __init__(self, is_training, config):
self.batch_size = batch_size = config.batch_size
self.num_steps = num_steps = config.num_steps
size = config.hidden_size
self._input_data = tf.placeholder(tf.float32, [batch_size, num_steps])
self._targets = tf.placeholder(tf.float32, [batch_size, num_steps])
lstm_cell = rnn_cell.BasicLSTMCell(size, forget_bias=0.0)
if is_training and config.keep_prob < 1:
lstm_cell = rnn_cell.DropoutWrapper(lstm_cell, output_keep_prob=config.keep_prob)
cell = rnn_cell.MultiRNNCell([lstm_cell] * config.num_layers)
self._initial_state = cell.zero_state(batch_size, tf.float32)
iw = tf.get_variable("input_w", [1, size])
ib = tf.get_variable("input_b", [size])
inputs = [tf.nn.xw_plus_b(i_, iw, ib) for i_ in tf.split(1, num_steps, self._input_data)]
if is_training and config.keep_prob < 1:
inputs = [tf.nn.dropout(input_, config.keep_prob) for input_ in inputs]
outputs, states = rnn.rnn(cell, inputs, initial_state=self._initial_state)
rnn_output = tf.reshape(tf.concat(1, outputs), [-1, size])
self._output = output = tf.nn.xw_plus_b(rnn_output,
tf.get_variable("out_w", [size, 1]),
tf.get_variable("out_b", [1]))
self._cost = cost = tf.reduce_mean(tf.square(output - tf.reshape(self._targets, [-1])))
self._final_state = states[-1]
if not is_training:
return
self._lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), config.max_grad_norm)
#optimizer = tf.train.GradientDescentOptimizer(self.lr)
optimizer = tf.train.AdamOptimizer(self.lr)
self._train_op = optimizer.apply_gradients(zip(grads, tvars))
def assign_lr(self, session, lr_value):
session.run(tf.assign(self.lr, lr_value))
@property
def input_data(self):
return self._input_data
@property
def targets(self):
return self._targets
@property
def initial_state(self):
return self._initial_state
@property
def cost(self):
return self._cost
@property
def output(self):
return self._output
@property
def final_state(self):
return self._final_state
@property
def lr(self):
return self._lr
@property
def train_op(self):
return self._train_op
def main(config_size='small', num_epochs=10):
def get_config(config_size):
config_size = config_size.lower()
if config_size == 'small':
return c.SmallConfig()
elif config_size == 'medium':
return c.MediumConfig()
elif config_size == 'large':
return c.LargeConfig()
else:
raise ValueError('Unknown config size {} (small, medium, large)'.format(config_size))
def run_epoch(session, m, data, eval_op, verbose=False):
"""Runs the model on the given data."""
epoch_size = ((len(data) // m.batch_size) - 1) // m.num_steps
print(epoch_size)
start_time = time.time()
costs = 0.0
iters = 0
state = m.initial_state.eval()
for step, (x, y) in enumerate(seq_iterator(data, m.batch_size, m.num_steps)):
cost, state, _ = session.run([m.cost, m.final_state, eval_op],
{m.input_data: x, m.targets: y, m.initial_state: state})
costs += cost
iters += m.num_steps
print_interval = 20
if verbose and epoch_size > print_interval \
and step % (epoch_size // print_interval) == print_interval:
print("%.3f mse: %.8f speed: %.0f ips" % (step * 1.0 / epoch_size, costs / iters,
iters * m.batch_size / (time.time() - start_time)))
return costs / (iters if iters > 0 else 1)
with tf.Graph().as_default(), tf.Session() as session:
config = get_config(config_size)
initializer = tf.random_uniform_initializer(-config.init_scale, config.init_scale)
with tf.variable_scope("model", reuse=None, initializer=initializer):
m = StockLSTM(is_training=True, config=config)
with tf.variable_scope("model", reuse=True, initializer=initializer):
mtest = StockLSTM(is_training=False, config=config)
tf.initialize_all_variables().run()
train_data, valid_data, test_data = get_data()
for epoch in xrange(num_epochs):
lr_decay = config.lr_decay ** max(epoch - num_epochs, 0.0)
m.assign_lr(session, config.learning_rate * lr_decay)
cur_lr = session.run(m.lr)
mse = run_epoch(session, m, train_data, m.train_op, verbose=True)
vmse = run_epoch(session, mtest, valid_data, tf.no_op())
print("Epoch: %d - learning rate: %.3f - train mse: %.3f - test mse: %.3f" %
(epoch, cur_lr, mse, vmse))
tmse = run_epoch(session, mtest, test_data, tf.no_op())
print("Test mse: %.3f" % tmse)
if __name__ == '__main__':
# make all arguments of main(...) command line arguments (with type inferred from
# the default value) - this doesn't work on bools so those are strings when
# passed into main.
import argparse, inspect
parser = argparse.ArgumentParser(description='Command line options')
ma = inspect.getargspec(main)
for arg_name,arg_type in zip(ma.args[-len(ma.defaults):],[type(de) for de in ma.defaults]):
parser.add_argument('--{}'.format(arg_name), type=arg_type, dest=arg_name)
args = parser.parse_args(sys.argv[1:])
main(**{k:v for (k,v) in vars(args).items() if v is not None})