forked from mpatacchiola/deepgaze
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex_dlib_pnp_head_pose_estimation_video.py
213 lines (178 loc) · 8.57 KB
/
ex_dlib_pnp_head_pose_estimation_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python
##
# Massimiliano Patacchiola, Plymouth University 2016
#
# This is an example of head pose estimation with solvePnP and dlib face detector.
# It uses the dlib library and openCV.
# To use this example you have to provide an input video file
# and an output path:
# python ex_pnp_pose_estimation_video.py /home/video.mpg ./output.avi
#
import numpy
import cv2
import sys
import os
from deepgaze.face_landmark_detection import faceLandmarkDetection
#For the frontal face detector
import dlib
#Antropometric constant values of the human head.
#Found on wikipedia and on:
# "Head-and-Face Anthropometric Survey of U.S. Respirator Users"
#
#X-Y-Z with X pointing forward and Y on the left.
#The X-Y-Z coordinates used are like the standard
# coordinates of ROS (robotic operative system)
P3D_RIGHT_SIDE = numpy.float32([-100.0, -77.5, -5.0]) #0
P3D_GONION_RIGHT = numpy.float32([-110.0, -77.5, -85.0]) #4
P3D_MENTON = numpy.float32([0.0, 0.0, -122.7]) #8
P3D_GONION_LEFT = numpy.float32([-110.0, 77.5, -85.0]) #12
P3D_LEFT_SIDE = numpy.float32([-100.0, 77.5, -5.0]) #16
P3D_FRONTAL_BREADTH_RIGHT = numpy.float32([-20.0, -56.1, 10.0]) #17
P3D_FRONTAL_BREADTH_LEFT = numpy.float32([-20.0, 56.1, 10.0]) #26
P3D_SELLION = numpy.float32([0.0, 0.0, 0.0]) #27
P3D_NOSE = numpy.float32([21.1, 0.0, -48.0]) #30
P3D_SUB_NOSE = numpy.float32([5.0, 0.0, -52.0]) #33
P3D_RIGHT_EYE = numpy.float32([-20.0, -65.5,-5.0]) #36
P3D_RIGHT_TEAR = numpy.float32([-10.0, -40.5,-5.0]) #39
P3D_LEFT_TEAR = numpy.float32([-10.0, 40.5,-5.0]) #42
P3D_LEFT_EYE = numpy.float32([-20.0, 65.5,-5.0]) #45
#P3D_LIP_RIGHT = numpy.float32([-20.0, 65.5,-5.0]) #48
#P3D_LIP_LEFT = numpy.float32([-20.0, 65.5,-5.0]) #54
P3D_STOMION = numpy.float32([10.0, 0.0, -75.0]) #62
#The points to track
#These points are the ones used by PnP
# to estimate the 3D pose of the face
TRACKED_POINTS = (0, 4, 8, 12, 16, 17, 26, 27, 30, 33, 36, 39, 42, 45, 62)
ALL_POINTS = list(range(0,68)) #Used for debug only
def main():
#Check if some argumentshave been passed
#pass the path of a video
if(len(sys.argv) > 2):
file_path = sys.argv[1]
if(os.path.isfile(file_path)==False):
print("ex_pnp_head_pose_estimation: the file specified does not exist.")
return
else:
#Open the video file
video_capture = cv2.VideoCapture(file_path)
if(video_capture.isOpened() == True): print("ex_pnp_head_pose_estimation: the video source has been opened correctly...")
# Define the codec and create VideoWriter object
#fourcc = cv2.VideoWriter_fourcc(*'XVID')
output_path = sys.argv[2]
fourcc = cv2.cv.CV_FOURCC(*'XVID')
out = cv2.VideoWriter(output_path, fourcc, 20.0, (1280,720))
else:
print("You have to pass as argument the path to a video file and the path to the output file to produce, for example: \n python ex_pnp_pose_estimation_video.py /home/video.mpg ./output.avi")
return
#Create the main window and move it
cv2.namedWindow('Video')
cv2.moveWindow('Video', 20, 20)
#Obtaining the CAM dimension
cam_w = int(video_capture.get(3))
cam_h = int(video_capture.get(4))
#Defining the camera matrix.
#To have better result it is necessary to find the focal
# lenght of the camera. fx/fy are the focal lengths (in pixels)
# and cx/cy are the optical centres. These values can be obtained
# roughly by approximation, for example in a 640x480 camera:
# cx = 640/2 = 320
# cy = 480/2 = 240
# fx = fy = cx/tan(60/2 * pi / 180) = 554.26
c_x = cam_w / 2
c_y = cam_h / 2
f_x = c_x / numpy.tan(60/2 * numpy.pi / 180)
f_y = f_x
#Estimated camera matrix values.
camera_matrix = numpy.float32([[f_x, 0.0, c_x],
[0.0, f_y, c_y],
[0.0, 0.0, 1.0] ])
print("Estimated camera matrix: \n" + str(camera_matrix) + "\n")
#These are the camera matrix values estimated on my webcam with
# the calibration code (see: src/calibration):
#camera_matrix = numpy.float32([[602.10618226, 0.0, 320.27333589],
#[ 0.0, 603.55869786, 229.7537026],
#[ 0.0, 0.0, 1.0] ])
#Distortion coefficients
camera_distortion = numpy.float32([0.0, 0.0, 0.0, 0.0, 0.0])
#Distortion coefficients estimated by calibration
#camera_distortion = numpy.float32([ 0.06232237, -0.41559805, 0.00125389, -0.00402566, 0.04879263])
#This matrix contains the 3D points of the
# 11 landmarks we want to find. It has been
# obtained from antrophometric measurement
# on the human head.
landmarks_3D = numpy.float32([P3D_RIGHT_SIDE,
P3D_GONION_RIGHT,
P3D_MENTON,
P3D_GONION_LEFT,
P3D_LEFT_SIDE,
P3D_FRONTAL_BREADTH_RIGHT,
P3D_FRONTAL_BREADTH_LEFT,
P3D_SELLION,
P3D_NOSE,
P3D_SUB_NOSE,
P3D_RIGHT_EYE,
P3D_RIGHT_TEAR,
P3D_LEFT_TEAR,
P3D_LEFT_EYE,
P3D_STOMION])
#Declaring the two classifiers
#my_cascade = haarCascade("./etc/haarcascade_frontalface_alt.xml", "./etc/haarcascade_profileface.xml")
my_detector = faceLandmarkDetection('./etc/shape_predictor_68_face_landmarks.dat')
my_face_detector = dlib.get_frontal_face_detector()
while(True):
# Capture frame-by-frame
ret, frame = video_capture.read()
#gray = cv2.cvtColor(frame[roi_y1:roi_y2, roi_x1:roi_x2], cv2.COLOR_BGR2GRAY)
faces_array = my_face_detector(frame, 1)
print("Total Faces: " + str(len(faces_array)))
for i, pos in enumerate(faces_array):
face_x1 = pos.left()
face_y1 = pos.top()
face_x2 = pos.right()
face_y2 = pos.bottom()
text_x1 = face_x1
text_y1 = face_y1 - 3
cv2.putText(frame, "FACE " + str(i+1), (text_x1,text_y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 1);
cv2.rectangle(frame,
(face_x1, face_y1),
(face_x2, face_y2),
(0, 255, 0),
2)
landmarks_2D = my_detector.returnLandmarks(frame, face_x1, face_y1, face_x2, face_y2, points_to_return=TRACKED_POINTS)
for point in landmarks_2D:
cv2.circle(frame,( point[0], point[1] ), 2, (0,0,255), -1)
#Applying the PnP solver to find the 3D pose
# of the head from the 2D position of the
# landmarks.
#retval - bool
#rvec - Output rotation vector that, together with tvec, brings
# points from the model coordinate system to the camera coordinate system.
#tvec - Output translation vector.
retval, rvec, tvec = cv2.solvePnP(landmarks_3D,
landmarks_2D,
camera_matrix, camera_distortion)
#Now we project the 3D points into the image plane
#Creating a 3-axis to be used as reference in the image.
axis = numpy.float32([[50,0,0],
[0,50,0],
[0,0,50]])
imgpts, jac = cv2.projectPoints(axis, rvec, tvec, camera_matrix, camera_distortion)
#Drawing the three axis on the image frame.
#The opencv colors are defined as BGR colors such as:
# (a, b, c) >> Blue = a, Green = b and Red = c
#Our axis/color convention is X=R, Y=G, Z=B
sellion_xy = (landmarks_2D[7][0], landmarks_2D[7][1])
cv2.line(frame, sellion_xy, tuple(imgpts[1].ravel()), (0,255,0), 3) #GREEN
cv2.line(frame, sellion_xy, tuple(imgpts[2].ravel()), (255,0,0), 3) #BLUE
cv2.line(frame, sellion_xy, tuple(imgpts[0].ravel()), (0,0,255), 3) #RED
#Writing in the output file
out.write(frame)
#Showing the frame and waiting
# for the exit command
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'): break
#Release the camera
video_capture.release()
print("Bye...")
if __name__ == "__main__":
main()