diff --git a/e2e/docs/testdata/julia_mnist/build.envd b/e2e/docs/testdata/julia_mnist/build.envd index 67440e761..d8ee4b08a 100644 --- a/e2e/docs/testdata/julia_mnist/build.envd +++ b/e2e/docs/testdata/julia_mnist/build.envd @@ -6,3 +6,4 @@ def build(): install.julia() install.julia_packages(name=["Flux", "MLDatasets"]) runtime.command(commands={"julia-mnist": "julia mlp_mnist.jl"}) + runtime.environ(env={"DATADEPS_ALWAYS_ACCEPT": "true"}) diff --git a/e2e/docs/testdata/julia_mnist/mlp_mnist.jl b/e2e/docs/testdata/julia_mnist/mlp_mnist.jl index 050e6dd79..26e0e3cef 100644 --- a/e2e/docs/testdata/julia_mnist/mlp_mnist.jl +++ b/e2e/docs/testdata/julia_mnist/mlp_mnist.jl @@ -68,9 +68,9 @@ train_loader = simple_loader(train_data, batchsize = 256) opt_state = Flux.setup(Adam(3e-4), model); -# Then train for 10 epochs, printing out details as we go: +# Then train for 3 epochs, printing out details as we go: -for epoch in 1:10 +for epoch in 1:3 loss = 0.0 for (x, y) in train_loader # Compute the loss and the gradients: