|
| 1 | + |
| 2 | +import tensorflow as tf |
| 3 | +import tensorlayer as tl |
| 4 | +from tensorlayer.layers import * |
| 5 | + |
| 6 | + |
| 7 | +flags = tf.app.flags |
| 8 | +FLAGS = flags.FLAGS |
| 9 | + |
| 10 | + |
| 11 | + |
| 12 | +def generator_simplified_api(inputs, is_train=True, reuse=False): |
| 13 | + image_size = 64 |
| 14 | + s2, s4, s8, s16 = int(image_size/2), int(image_size/4), int(image_size/8), int(image_size/16) |
| 15 | + gf_dim = 64 # Dimension of gen filters in first conv layer. [64] |
| 16 | + c_dim = FLAGS.c_dim # n_color 3 |
| 17 | + batch_size = FLAGS.batch_size # 64 |
| 18 | + |
| 19 | + w_init = tf.random_normal_initializer(stddev=0.02) |
| 20 | + gamma_init = tf.random_normal_initializer(1., 0.02) |
| 21 | + |
| 22 | + with tf.variable_scope("generator", reuse=reuse): |
| 23 | + tl.layers.set_name_reuse(reuse) |
| 24 | + |
| 25 | + net_in = InputLayer(inputs, name='g/in') |
| 26 | + net_h0 = DenseLayer(net_in, n_units=gf_dim*8*s16*s16, W_init=w_init, |
| 27 | + act = tf.identity, name='g/h0/lin') |
| 28 | + net_h0 = ReshapeLayer(net_h0, shape=[-1, s16, s16, gf_dim*8], name='g/h0/reshape') |
| 29 | + net_h0 = BatchNormLayer(net_h0, act=tf.nn.relu, is_train=is_train, |
| 30 | + gamma_init=gamma_init, name='g/h0/batch_norm') |
| 31 | + |
| 32 | + net_h1 = DeConv2d(net_h0, gf_dim*4, (5, 5), out_size=(s8, s8), strides=(2, 2), |
| 33 | + padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h1/decon2d') |
| 34 | + net_h1 = BatchNormLayer(net_h1, act=tf.nn.relu, is_train=is_train, |
| 35 | + gamma_init=gamma_init, name='g/h1/batch_norm') |
| 36 | + |
| 37 | + net_h2 = DeConv2d(net_h1, gf_dim*2, (5, 5), out_size=(s4, s4), strides=(2, 2), |
| 38 | + padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h2/decon2d') |
| 39 | + net_h2 = BatchNormLayer(net_h2, act=tf.nn.relu, is_train=is_train, |
| 40 | + gamma_init=gamma_init, name='g/h2/batch_norm') |
| 41 | + |
| 42 | + net_h3 = DeConv2d(net_h2, gf_dim, (5, 5), out_size=(s2, s2), strides=(2, 2), |
| 43 | + padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h3/decon2d') |
| 44 | + net_h3 = BatchNormLayer(net_h3, act=tf.nn.relu, is_train=is_train, |
| 45 | + gamma_init=gamma_init, name='g/h3/batch_norm') |
| 46 | + |
| 47 | + net_h4 = DeConv2d(net_h3, c_dim, (5, 5), out_size=(image_size, image_size), strides=(2, 2), |
| 48 | + padding='SAME', batch_size=batch_size, act=None, W_init=w_init, name='g/h4/decon2d') |
| 49 | + logits = net_h4.outputs |
| 50 | + net_h4.outputs = tf.nn.tanh(net_h4.outputs) |
| 51 | + return net_h4, logits |
| 52 | + |
| 53 | + |
| 54 | +def discriminator_simplified_api(inputs, is_train=True, reuse=False): |
| 55 | + df_dim = 64 # Dimension of discrim filters in first conv layer. [64] |
| 56 | + c_dim = FLAGS.c_dim # n_color 3 |
| 57 | + batch_size = FLAGS.batch_size # 64 |
| 58 | + |
| 59 | + w_init = tf.random_normal_initializer(stddev=0.02) |
| 60 | + gamma_init = tf.random_normal_initializer(1., 0.02) |
| 61 | + |
| 62 | + with tf.variable_scope("discriminator", reuse=reuse): |
| 63 | + tl.layers.set_name_reuse(reuse) |
| 64 | + |
| 65 | + net_in = InputLayer(inputs, name='d/in') |
| 66 | + net_h0 = Conv2d(net_in, df_dim, (5, 5), (2, 2), act=lambda x: tl.act.lrelu(x, 0.2), |
| 67 | + padding='SAME', W_init=w_init, name='d/h0/conv2d') |
| 68 | + |
| 69 | + net_h1 = Conv2d(net_h0, df_dim*2, (5, 5), (2, 2), act=None, |
| 70 | + padding='SAME', W_init=w_init, name='d/h1/conv2d') |
| 71 | + net_h1 = BatchNormLayer(net_h1, act=lambda x: tl.act.lrelu(x, 0.2), |
| 72 | + is_train=is_train, gamma_init=gamma_init, name='d/h1/batch_norm') |
| 73 | + |
| 74 | + net_h2 = Conv2d(net_h1, df_dim*4, (5, 5), (2, 2), act=None, |
| 75 | + padding='SAME', W_init=w_init, name='d/h2/conv2d') |
| 76 | + net_h2 = BatchNormLayer(net_h2, act=lambda x: tl.act.lrelu(x, 0.2), |
| 77 | + is_train=is_train, gamma_init=gamma_init, name='d/h2/batch_norm') |
| 78 | + |
| 79 | + net_h3 = Conv2d(net_h2, df_dim*8, (5, 5), (2, 2), act=None, |
| 80 | + padding='SAME', W_init=w_init, name='d/h3/conv2d') |
| 81 | + net_h3 = BatchNormLayer(net_h3, act=lambda x: tl.act.lrelu(x, 0.2), |
| 82 | + is_train=is_train, gamma_init=gamma_init, name='d/h3/batch_norm') |
| 83 | + |
| 84 | + net_h4 = FlattenLayer(net_h3, name='d/h4/flatten') |
| 85 | + net_h4 = DenseLayer(net_h4, n_units=1, act=tf.identity, |
| 86 | + W_init = w_init, name='d/h4/lin_sigmoid') |
| 87 | + logits = net_h4.outputs |
| 88 | + net_h4.outputs = tf.nn.sigmoid(net_h4.outputs) |
| 89 | + return net_h4, logits |
0 commit comments