-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathex_cifar10_cnn.py
120 lines (90 loc) · 3.8 KB
/
ex_cifar10_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
# os.environ['TL_BACKEND'] = 'paddle'
# os.environ['TL_BACKEND'] = 'tensorflow'
# os.environ['TL_BACKEND'] = 'mindspore'
os.environ['TL_BACKEND'] = 'torch'
import tensorlayerx as tlx
from tensorlayerx.nn import Module
from tensorlayerx.nn import (Conv2d, Linear, Flatten, MaxPool2d, BatchNorm2d)
from tensorlayerx.dataflow import Dataset, DataLoader
from tensorlayerx.vision.transforms import (
Compose, Resize, RandomFlipHorizontal, RandomContrast, RandomBrightness, StandardizePerImage, RandomCrop
)
# enable debug logging
tlx.logging.set_verbosity(tlx.logging.DEBUG)
# prepare cifar10 data
X_train, y_train, X_test, y_test = tlx.files.load_cifar10_dataset(shape=(-1, 32, 32, 3), plotable=False)
class CNN(Module):
def __init__(self):
super(CNN, self).__init__()
# weights init
W_init = tlx.nn.initializers.truncated_normal(stddev=5e-2)
W_init2 = tlx.nn.initializers.truncated_normal(stddev=0.04)
b_init2 = tlx.nn.initializers.constant(value=0.1)
self.conv1 = Conv2d(32, (3, 3), (1, 1), padding='SAME', W_init=W_init, b_init=None, name='conv1', in_channels=3)
self.maxpool1 = MaxPool2d((2, 2), (2, 2), padding='SAME', name='pool1')
self.conv2 = Conv2d(
64, (3, 3), (1, 1), padding='SAME', act=tlx.nn.ReLU, W_init=W_init, b_init=None, name='conv2', in_channels=32
)
self.conv3 = Conv2d(
64, (3, 3), (1, 1), padding='SAME', act=tlx.nn.ReLU, W_init=W_init, b_init=None, name='conv3', in_channels=64
)
self.maxpool2 = MaxPool2d((2, 2), (2, 2), padding='SAME', name='pool2')
self.flatten = Flatten(name='flatten')
self.linear1 = Linear(1024, act=tlx.nn.ReLU, W_init=W_init2, b_init=b_init2, name='linear1relu', in_features=2304)
self.linear2 = Linear(10, act=None, W_init=W_init2, name='output', in_features=1024)
def forward(self, x):
z = self.conv1(x)
z = self.maxpool1(z)
z = self.conv2(z)
z = self.maxpool2(z)
z = self.flatten(z)
z = self.linear1(z)
z = self.linear2(z)
return z
# get the network
net = CNN()
# training settings
batch_size = 128
n_epoch = 500
learning_rate = 0.0001
print_freq = 5
n_step_epoch = int(len(y_train) / batch_size)
n_step = n_epoch * n_step_epoch
shuffle_buffer_size = 128
# 定义损失函数、优化器等
loss_fn=tlx.losses.softmax_cross_entropy_with_logits
optimizer = tlx.optimizers.Adam(learning_rate)
metrics = tlx.metrics.Accuracy()
class CIFAR10Dataset(Dataset):
def __init__(self, data, label, transforms):
self.data = data
self.label = label
self.transforms = transforms
def __getitem__(self, idx):
x = self.data[idx].astype('uint8')
y = self.label[idx].astype('int64')
x = self.transforms(x)
return x, y
def __len__(self):
return len(self.label)
#设置数据增强函数
train_transforms = Compose(
[
RandomCrop(size=[24, 24]),
RandomFlipHorizontal(),
RandomBrightness(brightness_factor=(0.5, 1.5)),
RandomContrast(contrast_factor=(0.5, 1.5)),
StandardizePerImage()
]
)
test_transforms = Compose([Resize(size=(24, 24)), StandardizePerImage()])
#构建数据集和加载器
train_dataset = CIFAR10Dataset(data=X_train, label=y_train, transforms=train_transforms)
test_dataset = CIFAR10Dataset(data=X_test, label=y_test, transforms=test_transforms)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
#使用高级API构建可训练模型
model = tlx.model.Model(network=net, loss_fn=loss_fn, optimizer=optimizer, metrics=metrics)
#执行训练
model.train(n_epoch=n_epoch, train_dataset=train_loader, test_dataset=test_loader, print_freq=print_freq, print_train_batch=True)