- ✅ Docker configuration
- Backend Dockerfile with numpy optimization
- Frontend Dockerfile
- Docker Compose setup
- Service orchestration
- Health checks
- Wait-for-it script
- ✅ PostgreSQL with pgvector
- Vector extension configuration
- Database initialization script
- Index optimization
- Connection pooling
- Query optimization
- ✅ Basic document handling
- Text extraction
- Chunking system
- Embedding generation
- Metadata extraction
- Batch processing
- ✅ Table Extraction
- PDF table detection
- Table structure preservation
- Table metadata extraction
- Table-specific embeddings
- ✅ OCR Processing
- Image text extraction
- PDF image processing
- Layout analysis
- Confidence scoring
- ✅ Code Parsing
- Multi-language support
- Syntax highlighting
- Structure analysis
- Code-specific embeddings
- ✅ Hybrid Search
- BM25 scoring
- Vector similarity
- Score combination
- Result ranking
- ✅ Document Graph
- Reference detection
- Document linking
- Citation analysis
- Graph visualization
- ✅ Context Management
- Dynamic window sizing
- Relevance scoring
- Window overlap
- Context merging
- ✅ Query Enhancement
- Synonym expansion
- Semantic term generation
- Query refinement
- Domain-specific terms
- ✅ FastAPI implementation
- Document endpoints
- Chat endpoints
- Health checks
- Error handling
- Request validation
- ✅ Streamlit interface
- Document upload
- Chat interface
- Metadata display
- State management
- ✅ Redis implementation
- Embedding cache
- Query results cache
- Connection pooling
- Cache invalidation
- ✅ System monitoring
- Prometheus metrics
- Grafana dashboards
- Performance tracking
- Error logging
Priority: High
- Implementation plan:
- Add integration test suite
- Create test data generator
- Add performance benchmarks
- Create test scenarios
class TestScenario: async def run_scenario(self): # Upload test documents docs = await self.upload_test_documents() # Perform searches results = await self.perform_test_searches() # Validate results self.validate_results(results)
Priority: High
- Implementation plan:
- Profile system performance
- Optimize bottlenecks
- Add caching strategies
- Implement parallel processing
class PerformanceOptimizer: async def optimize_retrieval(self): # Parallel search vector_results = await self.vector_search() bm25_results = await self.bm25_search() # Combine results efficiently return self.merge_results(vector_results, bm25_results)
Priority: Medium
- Implementation plan:
- API documentation
- System architecture docs
- Deployment guide
- User manual
- Day 1-2: Test suite setup
- Day 3-4: Test scenarios
- Day 5: Performance tests
- Day 6-7: Bug fixes
- Day 1-2: Profiling
- Day 3-4: Optimization
- Day 5: Benchmarking
- Day 6-7: Validation
- Day 1-2: API docs
- Day 3-4: Architecture docs
- Day 5: Deployment guide
- Day 6-7: User manual
-
Test Coverage
- End-to-end test coverage > 80%
- All core features tested
- Performance benchmarks passed
- Edge cases handled
-
Performance Metrics
- Query latency < 1s
- Document processing < 5s
- Cache hit rate > 80%
- Resource usage optimized
-
Documentation Quality
- Complete API documentation
- Clear architecture diagrams
- Step-by-step deployment guide
- Comprehensive user manual
-
Advanced Features
- Multi-language support
- Real-time collaboration
- Custom embeddings
- Advanced visualization
-
Scalability
- Distributed processing
- Horizontal scaling
- Load balancing
- Sharding
-
Security
- Authentication
- Authorization
- Data encryption
- Audit logging
-
Analytics
- Usage tracking
- Performance analytics
- Search patterns
- User behavior
This plan reflects our completion of the advanced retrieval features and outlines the remaining steps for integration testing, performance optimization, and documentation. The focus is on ensuring the system is well-tested, performant, and properly documented for deployment.