Skip to content

Latest commit

 

History

History
212 lines (181 loc) · 4.82 KB

planning.md

File metadata and controls

212 lines (181 loc) · 4.82 KB

Implementation Status and Next Steps

Completed Components

1. Core Infrastructure

  • ✅ Docker configuration
    • Backend Dockerfile with numpy optimization
    • Frontend Dockerfile
    • Docker Compose setup
    • Service orchestration
    • Health checks
    • Wait-for-it script

2. Database Setup

  • ✅ PostgreSQL with pgvector
    • Vector extension configuration
    • Database initialization script
    • Index optimization
    • Connection pooling
    • Query optimization

3. Document Processing

  • ✅ Basic document handling
    • Text extraction
    • Chunking system
    • Embedding generation
    • Metadata extraction
    • Batch processing

4. Advanced Document Processing

  • ✅ Table Extraction
    • PDF table detection
    • Table structure preservation
    • Table metadata extraction
    • Table-specific embeddings
  • ✅ OCR Processing
    • Image text extraction
    • PDF image processing
    • Layout analysis
    • Confidence scoring
  • ✅ Code Parsing
    • Multi-language support
    • Syntax highlighting
    • Structure analysis
    • Code-specific embeddings

5. Advanced Retrieval Features

  • ✅ Hybrid Search
    • BM25 scoring
    • Vector similarity
    • Score combination
    • Result ranking
  • ✅ Document Graph
    • Reference detection
    • Document linking
    • Citation analysis
    • Graph visualization
  • ✅ Context Management
    • Dynamic window sizing
    • Relevance scoring
    • Window overlap
    • Context merging
  • ✅ Query Enhancement
    • Synonym expansion
    • Semantic term generation
    • Query refinement
    • Domain-specific terms

6. API Layer

  • ✅ FastAPI implementation
    • Document endpoints
    • Chat endpoints
    • Health checks
    • Error handling
    • Request validation

7. Frontend

  • ✅ Streamlit interface
    • Document upload
    • Chat interface
    • Metadata display
    • State management

8. Caching

  • ✅ Redis implementation
    • Embedding cache
    • Query results cache
    • Connection pooling
    • Cache invalidation

9. Monitoring

  • ✅ System monitoring
    • Prometheus metrics
    • Grafana dashboards
    • Performance tracking
    • Error logging

Next Steps: Integration and Testing

1. End-to-End Testing

Priority: High

  • Implementation plan:
    1. Add integration test suite
    2. Create test data generator
    3. Add performance benchmarks
    4. Create test scenarios
    class TestScenario:
        async def run_scenario(self):
            # Upload test documents
            docs = await self.upload_test_documents()
            
            # Perform searches
            results = await self.perform_test_searches()
            
            # Validate results
            self.validate_results(results)

2. Performance Optimization

Priority: High

  • Implementation plan:
    1. Profile system performance
    2. Optimize bottlenecks
    3. Add caching strategies
    4. Implement parallel processing
    class PerformanceOptimizer:
        async def optimize_retrieval(self):
            # Parallel search
            vector_results = await self.vector_search()
            bm25_results = await self.bm25_search()
            
            # Combine results efficiently
            return self.merge_results(vector_results, bm25_results)

3. Documentation

Priority: Medium

  • Implementation plan:
    1. API documentation
    2. System architecture docs
    3. Deployment guide
    4. User manual

Implementation Schedule

Week 1: Integration Testing

  • Day 1-2: Test suite setup
  • Day 3-4: Test scenarios
  • Day 5: Performance tests
  • Day 6-7: Bug fixes

Week 2: Performance Optimization

  • Day 1-2: Profiling
  • Day 3-4: Optimization
  • Day 5: Benchmarking
  • Day 6-7: Validation

Week 3: Documentation

  • Day 1-2: API docs
  • Day 3-4: Architecture docs
  • Day 5: Deployment guide
  • Day 6-7: User manual

Success Criteria

  1. Test Coverage

    • End-to-end test coverage > 80%
    • All core features tested
    • Performance benchmarks passed
    • Edge cases handled
  2. Performance Metrics

    • Query latency < 1s
    • Document processing < 5s
    • Cache hit rate > 80%
    • Resource usage optimized
  3. Documentation Quality

    • Complete API documentation
    • Clear architecture diagrams
    • Step-by-step deployment guide
    • Comprehensive user manual

Future Enhancements

  1. Advanced Features

    • Multi-language support
    • Real-time collaboration
    • Custom embeddings
    • Advanced visualization
  2. Scalability

    • Distributed processing
    • Horizontal scaling
    • Load balancing
    • Sharding
  3. Security

    • Authentication
    • Authorization
    • Data encryption
    • Audit logging
  4. Analytics

    • Usage tracking
    • Performance analytics
    • Search patterns
    • User behavior

This plan reflects our completion of the advanced retrieval features and outlines the remaining steps for integration testing, performance optimization, and documentation. The focus is on ensuring the system is well-tested, performant, and properly documented for deployment.