forked from tkfy920/Stock-Prediction-Models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
autoencoder.py
executable file
·41 lines (34 loc) · 1.89 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import tensorflow as tf
import numpy as np
import time
def reducedimension(input_, dimension = 2, learning_rate = 0.01, hidden_layer = 256, epoch = 20):
input_size = input_.shape[1]
X = tf.placeholder("float", [None, input_size])
weights = {
'encoder_h1': tf.Variable(tf.random_normal([input_size, hidden_layer])),
'encoder_h2': tf.Variable(tf.random_normal([hidden_layer, dimension])),
'decoder_h1': tf.Variable(tf.random_normal([dimension, hidden_layer])),
'decoder_h2': tf.Variable(tf.random_normal([hidden_layer, input_size])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([hidden_layer])),
'encoder_b2': tf.Variable(tf.random_normal([dimension])),
'decoder_b1': tf.Variable(tf.random_normal([hidden_layer])),
'decoder_b2': tf.Variable(tf.random_normal([input_size])),
}
first_layer_encoder = tf.nn.sigmoid(tf.add(tf.matmul(X, weights['encoder_h1']), biases['encoder_b1']))
second_layer_encoder = tf.nn.sigmoid(tf.add(tf.matmul(first_layer_encoder, weights['encoder_h2']), biases['encoder_b2']))
first_layer_decoder = tf.nn.sigmoid(tf.add(tf.matmul(second_layer_encoder, weights['decoder_h1']), biases['decoder_b1']))
second_layer_decoder = tf.nn.sigmoid(tf.add(tf.matmul(first_layer_decoder, weights['decoder_h2']), biases['decoder_b2']))
cost = tf.reduce_mean(tf.pow(X - second_layer_decoder, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
for i in range(epoch):
last_time = time.time()
_, loss = sess.run([optimizer, cost], feed_dict={X: input_})
if (i + 1) % 10 == 0:
print('epoch:', i + 1, 'loss:', loss, 'time:', time.time() - last_time)
vectors = sess.run(second_layer_encoder, feed_dict={X: input_})
tf.reset_default_graph()
return vectors