-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvoicecraft.py
1406 lines (1244 loc) · 78 KB
/
voicecraft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import random
import numpy as np
import logging
import argparse, copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchmetrics.classification import MulticlassAccuracy
from .modules.utils import make_pad_mask
from .modules.embedding import SinePositionalEmbedding, TokenEmbedding
from .modules.transformer import (
LayerNorm,
TransformerEncoder,
TransformerEncoderLayer,
)
from .codebooks_patterns import DelayedPatternProvider
def top_k_top_p_filtering(
logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1
):
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (batch size, vocabulary size)
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
Make sure we keep at least min_tokens_to_keep per batch example in the output
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
if top_k > 0:
top_k = min(
max(top_k, min_tokens_to_keep), logits.size(-1)
) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(
F.softmax(sorted_logits, dim=-1), dim=-1
)
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
sorted_indices_to_remove = cumulative_probs > top_p
if min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
..., :-1
].clone()
sorted_indices_to_remove[..., 0] = 0
# scatter sorted tensors to original indexing
indices_to_remove = sorted_indices_to_remove.scatter(
1, sorted_indices, sorted_indices_to_remove
)
logits[indices_to_remove] = filter_value
return logits
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
# temperature: (`optional`) float
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
# top_k: (`optional`) int
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
# top_p: (`optional`) float
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
# Temperature (higher temperature => more likely to sample low probability tokens)
if temperature != 1.0:
logits = logits / temperature
# Top-p/top-k filtering
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
# Sample
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
return token
class VoiceCraft(nn.Module):
def __init__(self, args):
super().__init__()
self.args = copy.copy(args)
self.pattern = DelayedPatternProvider(n_q=self.args.n_codebooks)
if not getattr(self.args, "special_first", False):
self.args.special_first = 0
if not getattr(self.args, "n_special", False):
self.args.n_special = 3
self.args.eos = getattr(self.args, "eos", -1)
self.eog = nn.Parameter(torch.full((self.args.n_codebooks, 1), self.args.eog, dtype=torch.long), requires_grad=False) # [K 1]
if self.args.eos > 0:
assert self.args.eos != self.args.audio_pad_token and self.args.eos != self.args.empty_token, self.args.eos
self.eos = nn.Parameter(torch.full((self.args.n_codebooks, 1), self.args.eos, dtype=torch.long), requires_grad=False) # [K 1]
if type(self.args.audio_vocab_size) == str:
self.args.audio_vocab_size = eval(self.args.audio_vocab_size)
self.n_text_tokens = self.args.text_vocab_size + 1
assert self.args.text_pad_token == self.args.text_vocab_size, f"self.args.text_vocab_size: {self.args.text_vocab_size}, self.args.text_pad_token: {self.args.text_pad_token}"
self.n_audio_tokens = [self.args.audio_vocab_size + self.args.n_special] * self.args.n_codebooks # special tokens: empty token, EOG token, audio pad token
assert self.args.audio_vocab_size == self.args.empty_token, self.args.empty_token
assert self.args.eog == self.args.audio_vocab_size + 1, self.args.eog
assert self.args.audio_pad_token == self.args.audio_vocab_size + 2, self.args.audio_pad_token
self.text_embedding = TokenEmbedding(
dim_model=self.args.d_model,
vocab_size=self.n_text_tokens,
dropout=self.args.text_embedding_dropout
)
self.audio_embedding = nn.ModuleList(
[
TokenEmbedding(
dim_model=self.args.audio_embedding_dim,
vocab_size=self.n_audio_tokens[k],
dropout=self.args.audio_embedding_dropout
) for k in range(self.args.n_codebooks)
]
)
self.mask_embedding = nn.Parameter(torch.randn(self.args.max_n_spans, self.args.d_model), requires_grad=True)
self.text_positional_embedding = SinePositionalEmbedding(
self.args.d_model,
dropout=self.args.text_positional_embedding_dropout,
scale=False,
alpha=True, # learnable scaler, scale the volume of positional embedding
)
self.audio_positional_embedding = SinePositionalEmbedding(
self.args.d_model,
dropout=self.args.audio_positional_embedding_dropout,
scale=False,
alpha=True, # learnable scaler, scale the volume of positional embedding
)
dec_layer = TransformerEncoderLayer(
self.args.d_model,
self.args.nhead,
dim_feedforward=self.args.d_model * 4,
dropout=self.args.trm_dropout,
batch_first=True,
norm_first=True,
layer_norm_cls=LayerNorm
)
self.decoder = TransformerEncoder(
dec_layer,
num_layers=self.args.num_decoder_layers,
norm=LayerNorm(self.args.d_model),
)
self.predict_layer = nn.ModuleList(
[
nn.Sequential(nn.Linear(self.args.d_model, self.args.audio_vocab_size//2), nn.GELU(), nn.Linear(self.args.audio_vocab_size//2, self.n_audio_tokens[k])) for k in range(self.args.n_codebooks)
]
)
self.accuracy_metrics = nn.ModuleList(
[MulticlassAccuracy(
self.n_audio_tokens[k],
top_k=10,
average="micro",
multidim_average="global",
ignore_index=None,
) for k in range(self.args.n_codebooks)]
)
def prepare_mask_intervals(self, y_lens):
mask_intervals = []
non_mask_intervals = []
for i, y_len in enumerate(y_lens):
if self.args.mask_sample_dist == "uniform":
n_spans = random.choice(range(1, self.args.max_n_spans+1))
elif "poisson" in self.args.mask_sample_dist.lower():
param = float(self.args.mask_sample_dist[len("poisson"):])
poisson_sample = torch.poisson(torch.tensor([param]))
n_spans = int(poisson_sample.clamp(1, self.args.max_n_spans).item())
starts = random.sample(range(1, y_len-1-self.args.mask_len_min), n_spans)
starts = sorted(starts)
for j in range(len(starts)-1, 0, -1):
if starts[j] - starts[j-1] < self.args.min_gap:
del starts[j] # If elements are too close, delete the later one
assert len(starts) > 0, f"there is no masked span left, y_len: {y_len}, sampled n_spans: {n_spans}"
temp_starts = starts + [y_len]
gaps = [temp_starts[j+1] - temp_starts[j] for j in range(len(temp_starts)-1)]
ends = []
for j, (start, gap) in enumerate(zip(starts, gaps)):
mask_len = random.randint(self.args.mask_len_min, self.args.mask_len_max)
# if mask_len > gap * self.args.max_mask_portion: # make sure the masks are not overlapping with each other
if mask_len > gap - 1: # make sure the masks are not overlapping with each other
# temp_mask_start = int(0.6*gap*self.args.max_mask_portion)
# temp_mask_end = int(gap*self.args.max_mask_portion)
temp_mask_start = 1
temp_mask_end = gap - 1
mask_len = random.randint(temp_mask_start, temp_mask_end)
ends.append(start + mask_len)
mask_intervals.append([(s,e) for s,e in zip(starts, ends)])
non_mask_intervals.append([(ns,ne) for ns, ne in zip([0]+ends, starts+[y_len])])
return mask_intervals, non_mask_intervals
def rearrange(self, y, non_mask_intervals, mask_intervals):
reduced_eog = getattr(self.args, "reduced_eog", 0)
rearranged_y = []
for i in range(len(y)):
if self.args.eos > 0:
assert reduced_eog
cur_y = [y[i, :, item[0]: item[1]] for item in non_mask_intervals[i][:-1]] + [torch.cat([y[i, :, non_mask_intervals[i][-1][0]: non_mask_intervals[i][-1][1]], self.eos], dim=-1)] + [torch.cat([y[i, :, item[0]: item[1]], self.eog], dim=-1) for item in mask_intervals[i]] # only insert eog to the last non-mask-interval, which is when the utterance actual ends
else:
if reduced_eog:
cur_y = [y[i, :, item[0]: item[1]] for item in non_mask_intervals[i][:-1]] + [torch.cat([y[i, :, non_mask_intervals[i][-1][0]: non_mask_intervals[i][-1][1]], self.eog], dim=-1)] + [torch.cat([y[i, :, item[0]: item[1]], self.eog], dim=-1) for item in mask_intervals[i]] # only insert eog to the last non-mask-interval, which is when the utterance actual ends
else:
cur_y = [torch.cat([y[i, :, item[0]: item[1]], self.eog], dim=-1) for item in non_mask_intervals[i]] + [torch.cat([y[i, :, item[0]: item[1]], self.eog], dim=-1) for item in mask_intervals[i]] # eog is added to each section TODO this is not correct, I should add eog to non_mask_intervals if that segment is not the ending segment (as there is no way for the model to predict eog for those segments, and this will do harm to tts experiment, where the model randomly output eog for the first segment)
rearranged_y.append(cur_y)
return rearranged_y
def shift(self, rearranged_y):
shifted_y = []
patterns = []
for i in range(len(rearranged_y)):
cur_patterns = [self.pattern.get_pattern(cur_y.shape[1]) for cur_y in rearranged_y[i]]
out = [cur_pattern.build_pattern_sequence(z=cur_y.unsqueeze(0).contiguous(), special_token=self.args.empty_token, keep_only_valid_steps=False) for cur_pattern, cur_y in zip(cur_patterns, rearranged_y[i])]
shifted_y.append([item[0].squeeze(0) for item in out]) # the first item is values, later two are indexes and mask
patterns.append(cur_patterns)
return shifted_y, patterns
def shift_single(self, y: torch.Tensor):
pattern = self.pattern.get_pattern(y.shape[1])
out = pattern.build_pattern_sequence(
z=y.unsqueeze(0).contiguous(),
special_token=self.args.empty_token,
keep_only_valid_steps=False)
shifted_y = out[0].squeeze(0)
return shifted_y, pattern
def insert_mask(self, shifted_y):
inserted_y = []
mask_position = []
mask_value = []
for i in range(len(shifted_y)):
num_masks = (len(shifted_y[i]) - 1) // 2
assert num_masks == (len(shifted_y[i]) - 1) / 2, len(shifted_y[i])
emb_inds = list(range(self.args.max_n_spans))
if self.args.shuffle_mask_embedding:
random.shuffle(emb_inds)
emb_inds_use = emb_inds[:num_masks]
emb_inds_use = emb_inds_use + emb_inds_use
mask_value.append(emb_inds_use)
cur_inserted_y = []
cur_mask_position = []
for j in range(len(shifted_y[i])-1):
cur_inserted_y.append(shifted_y[i][j])
cur_mask_position.append(sum([item.shape[1] for item in cur_inserted_y])) # each item is of shape [K S], so take shape[1]
cur_inserted_y.append(self.eog) # insert mask token of shape [K, 1], BUT we are actually using the eog token as a place holder here, as the real mask will be inserted in embed_y function
cur_inserted_y.append(shifted_y[i][-1])
inserted_y.append(cur_inserted_y)
mask_position.append(cur_mask_position)
return inserted_y, mask_position, mask_value
def cat_y(self, inserted_y, mask_position, y_lens):
reduced_eog = getattr(self.args, "reduced_eog", 0)
cated_y = []
new_y_lens = []
for i in range(len(inserted_y)):
cur_cated_y = torch.cat(inserted_y[i], dim=1) #[K S]
cur_cated_y = cur_cated_y.transpose(1,0) # [S K]
cur_cated_y_len = cur_cated_y.shape[0]
if reduced_eog:
assert cur_cated_y_len == y_lens[i] + len(mask_position[i]) + (len(mask_position[i]) + 1) * self.args.n_codebooks + (len(mask_position[i])/2 + 1), f"cur_cated_y_len == {cur_cated_y_len}, but it should be y_lens[i] ({y_lens[i]}) + len(mask_position[i]) ({len(mask_position[i])}) + (len(mask_position[i]) + 1) * self.args.n_codebooks ({(len(mask_position[i]) + 1) * self.args.n_codebooks}) + (len(mask_position[i])/2 + 1) ({len(mask_position[i])/2 + 1})={y_lens[i] + len(mask_position[i]) + (len(mask_position[i]) + 1) * self.args.n_codebooks + (len(mask_position[i])/2 + 1)}"
else:
assert cur_cated_y_len == y_lens[i] + len(mask_position[i]) + (len(mask_position[i]) + 1) * self.args.n_codebooks + (len(mask_position[i]) + 1), f"cur_cated_y_len == {cur_cated_y_len}, but it should be y_lens[i] ({y_lens[i]}) + len(mask_position[i]) ({len(mask_position[i])}) + (len(mask_position[i]) + 1) * self.args.n_codebooks ({(len(mask_position[i]) + 1) * self.args.n_codebooks}) + (len(mask_position[i]) + 1) ({len(mask_position[i]) + 1})" # the last term represent the inserted eog token, originally it's inserted at the end of every token, but this is wrong
new_y_lens.append(cur_cated_y_len)
cated_y.append(cur_cated_y)
cated_y = torch.nn.utils.rnn.pad_sequence(cated_y, batch_first=False, padding_value=self.args.audio_pad_token)
assert cated_y.shape == torch.Size([max(new_y_lens),len(inserted_y), self.args.n_codebooks]), f"cated_y.shape: {cated_y.shape}, but it should be {torch.Size([max(new_y_lens,len(inserted_y), self.args.n_codebooks)])}"
cated_y = cated_y.permute(2,0,1) # [T,B,K]->[K,T,B]
assert cated_y.shape[0] == self.args.n_codebooks, cated_y.shape
return cated_y, torch.LongTensor(new_y_lens).to(cated_y.device)
def embed_y(self, cated_y, mask_position, mask_value):
embedded_y = torch.stack([self.audio_embedding[k](cated_y[k]) for k in range(self.args.n_codebooks)], dim=0) # [K, T, B, D]
assert embedded_y.shape[0] == self.args.n_codebooks, embedded_y.shape
assert embedded_y.shape[-1] == self.args.d_model, embedded_y.shape
embedded_y = embedded_y.sum(dim=0) # [K,T,B,D]->[T,B,D]
embedded_y = embedded_y.transpose(1,0) # [T,B,D]->[B,T,D]
for i in range(len(embedded_y)):
if len(mask_position[i]) > 0:
embedded_y[i, mask_position[i]] = self.mask_embedding[mask_value[i]]
return embedded_y
def prepare_input_target(self, y, y_lens):
# rearrange y
# assume y shape: [B T K], K is n_codebooks
assert y.shape[1] == self.args.n_codebooks, y.shape
# sample mask_intervals
mask_intervals, non_mask_intervals = self.prepare_mask_intervals(y_lens)
# need to have EOG in each section (SOG will be generated by the pattern class)
# but mask can be inserted later after we have shifted the input
# y could be rearranged in this way:
# [
# [tensor[4, 12], tensor[4, 45], tensor[4, 102], tensor[4, 32]], tensor[4, 22]],
# [tensor[4, 44], tensor[4, 56], tensor[4, 19]],
# ...
# ]
# for the first list of tensors (4 tensors), first 3 tensors are non_masked part, last 2 are masked part.
# NOTE #non_masked_part = #masked_part + 1
# NOTE *these are also the targets*
# added eog at the end of each segment (masked segment and unmasked segment)
rearranged_y = self.rearrange(y, non_mask_intervals, mask_intervals)
targets = rearranged_y # each element in each sample is of shape [K T]
assert targets[0][0].shape[0] == self.args.n_codebooks, targets[0][0].shape
# next we need to apply pattern shifting to each tensor, after which, we'll replace the starting tokens of each section with a token that's different from the special padding token
# [[5, 1, 2, 3, 4, 5, 5],
# [5, 5, 1, 2, 3, 4, 5],
# [5, 5, 5, 1, 2, 3, 4]]
shifted_y, patterns = self.shift(rearranged_y) # each element [K S]
assert shifted_y[0][0].shape[0] == self.args.n_codebooks, shifted_y[0][0].shape[0]
# then, insert mask token at the intersection of each tensor (we want to decide the arrangement of the mask (shuffle or not)), we better have a separate nn.embedding for it
# we also need to record the position of the inserted mask
inserted_y, mask_position, mask_value = self.insert_mask(shifted_y)
assert inserted_y[0][0].shape[0] == self.args.n_codebooks, inserted_y[0][0].shape[0]
assert inserted_y[0][1].shape == torch.Size((self.args.n_codebooks, 1)), f"this should be a mask, so should have shape {(self.args.n_codebooks, 1)}, but it's {inserted_y[0][1].shape}"
# then concat tensors that belong to the same sample (in order) then get the length of each sample, and then stack them in batch dimension, pad them with pad_token
cated_y, new_y_lens = self.cat_y(inserted_y, mask_position, y_lens) # KTB
assert cated_y.shape == torch.Size((self.args.n_codebooks, cated_y.shape[1], len(inserted_y)))
# embed remember to separately embed the mask tokens
embedded_y = self.embed_y(cated_y, mask_position, mask_value) #BTD
assert embedded_y.shape[1:] == torch.Size((max(new_y_lens), self.args.d_model)), embedded_y.shape
# positional embedding
y_input = self.audio_positional_embedding(embedded_y)
# make attention mask and padding mask
y_padding_mask = make_pad_mask(new_y_lens).to(y.device)
y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y_padding_mask.device)
return y_input, new_y_lens, targets, y_padding_mask, y_attention_mask, mask_position, patterns
def remove_mask(self, logits, mask_position, new_y_lens):
# logits: [B K S card]
logits_use = []
for i in range(len(logits)):
non_mask_positions = [-1] + mask_position[i] + [new_y_lens[i]]
non_mask_intervals = [[non_mask_positions[i]+1, non_mask_positions[i+1]] for i in range(len(non_mask_positions)-1)]
cur_logits_use = [logits[i, :, l:r] for l,r in non_mask_intervals]
logits_use.append(cur_logits_use)
return logits_use
def revert_pattern(self, patterns, logits_use):
logits_final = []
logit_masks = []
for i in range(len(logits_use)):
cur_logits = [
item.unsqueeze(0).permute(0, 3, 1, 2).contiguous() for item in logits_use[i]
] # each item is of shape [1 K S card] [1 card K S]
cur_logits_final = [
cur_pattern.revert_pattern_logits(
item, 0, keep_only_valid_steps=False
)
for cur_pattern, item in zip(patterns[i], cur_logits)
] # if input output order doesn't match, this step will give an error
cur_logits_final_ret = [item[0].permute(0,2,3,1).squeeze(0) for item in cur_logits_final] # each element is of shape [K,T,card]
logits_final.append(cur_logits_final_ret)
logit_masks.append([item[2] for item in cur_logits_final])
return logits_final, logit_masks
def dec_forward(
self,
x_input,
x_lens,
x_attention_mask,
x_padding_mask,
y_input,
new_y_lens,
y_attention_mask,
y_padding_mask,
past=None,
last_3_tokens=False
):
x_attn_mask = F.pad(
x_attention_mask,
(0, new_y_lens.max()),
value=True,
) # x attn to all x, doesn't attn to any y, this follow figure 3 of the valle paper
y_attn_mask = F.pad(
y_attention_mask,
(x_lens.max(), 0), # y is padded at the front
value=False,
) # y attn to all x, for y itself use lower triangle mask to ensure autoregressive
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
# merge key padding and attention masks
bsz, src_len = x_input.shape[0], x_lens.max() + new_y_lens.max()
xy_padding_mask = torch.concat([x_padding_mask, y_padding_mask], dim=1)
_xy_padding_mask = (
xy_padding_mask.view(bsz, 1, 1, src_len)
.expand(-1, self.args.nhead, -1, -1)
.reshape(bsz * self.args.nhead, 1, src_len)
)
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
new_attn_mask = torch.zeros_like(xy_attn_mask)
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
xy_attn_mask = new_attn_mask
xy_input = torch.cat([x_input, y_input], dim=1)
if past is None: # do not use kvcache
out, _ = self.decoder((xy_input, None), mask=xy_attn_mask)
return out[:, x_lens.max():], None
else: # use kvcache
if past.ndim > 3: # uses kvcache, only need to pass the last tokens, this doesn't work with multi-span speech editing yet
if last_3_tokens:
xy_input = xy_input[:, -3:]
xy_attn_mask = xy_attn_mask[:, -3:]
else:
xy_input = xy_input[:, -1:]
xy_attn_mask = xy_attn_mask[:, -1:]
out, present = self.decoder((xy_input, None), mask=xy_attn_mask, past=past)
if isinstance(out, tuple): # get rid of stage_embedding
out = out[0]
if out.shape[1] > x_lens.max(): # the first pass, not kvcache yet
return out[:, x_lens.max():], present
else: # used kvcache
return out, present
def forward(self, batch):
"""
Args:
x:
A 2-D tensor of shape (N, S).
x_lens:
A 1-D tensor of shape (N,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (N, K, T).
where K is the number of codebooks
y_lens:
A 1-D tensor of shape (N,). It contains the number of tokens in `x`
before padding.
"""
x, x_lens, y, y_lens = batch["x"], batch["x_lens"], batch["y"], batch["y_lens"]
x = x[:, :x_lens.max()] # this deal with gradient accumulation, where x_lens.max() might not be longer than the length of the current slice of x
y = y[:, :y_lens.max()]
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.ndim == 3 and y.shape[1] == self.args.n_codebooks, y.shape
assert y_lens.ndim == 1, y_lens.shape
# makes attention mask and padding mask for x
x_padding_mask = make_pad_mask(x_lens).to(x.device)
x_attention_mask = torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1).bool().to(x_padding_mask.device)
x_input = self.text_embedding(x)
x_input = self.text_positional_embedding(x_input)
y_input, new_y_lens, targets, y_padding_mask, y_attention_mask, mask_position, patterns = self.prepare_input_target(y, y_lens)
y_out = self.dec_forward(
x_input,
x_lens,
x_attention_mask,
x_padding_mask,
y_input,
new_y_lens,
y_attention_mask,
y_padding_mask
)
y_out = y_out[0] # no kv-caching during training
assert y_out.shape == y_input.shape, f"y_out.shape: {y_out.shape}, y_input.shape: {y_input.shape}" # [B S D]
logits = torch.stack([self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)], dim=1) # [B K S card]
# take out the mask token (using mask_position and new_y_lens) and revert (using function provided by self.pattern)
assert logits.shape[1] == self.args.n_codebooks and logits.shape[3] == self.n_audio_tokens[0], logits.shape
logits_use = self.remove_mask(logits, mask_position, new_y_lens)
# revert the pattern shift for each logits section in each sample
logits_final, logit_masks = self.revert_pattern(patterns, logits_use)
assert logits_final[0][0].shape[0] == self.args.n_codebooks and logits_final[0][0].shape[2] == self.n_audio_tokens[0], f"it is: {logits_final[0][0].shape}, but should be [K, T, card]"
# testing
sample_to_test = 0
assert len(logits_final[sample_to_test]) == len(targets[sample_to_test]), f"{len(logits_final[sample_to_test])}, {len(targets[sample_to_test])}"
temp = sum([logits_final[sample_to_test][i].shape[:-1] != targets[sample_to_test][i].shape for i in range(len(targets[sample_to_test]))])
assert temp == 0, f"none equal positions: {temp}, total number of elements: {len(targets[sample_to_test])}"
logit_masked = sum([(item==False).any() for cur_mask in logit_masks for item in cur_mask])
assert logit_masked == 0, logit_masks
logits = torch.cat([torch.cat(item, dim=1) for item in logits_final], dim=1) # [K, T1+T2+T3+..., card]
targets = torch.cat([torch.cat(item, dim=1) for item in targets], dim=1) # [K, T1+T2+T3+...]
assert targets.shape[0] == logits.shape[0], f"{targets.shape}, {logits.shape}"
loss = []
ntokens = []
top10acc = []
for k, (logit, target) in enumerate(zip(logits, targets)):
loss.append(F.cross_entropy(logit, target, reduction='mean'))
top10acc.append(self.accuracy_metrics[k](logit.detach(), target))
ntokens.append(len(logit))
all_ntokens = sum(ntokens)
if self.args.codebook_weight != None:
codebook_weight = eval(self.args.codebook_weight)
else:
codebook_weight = [1.] * self.args.n_codebooks
loss = sum([l*nt*cw for l, nt, cw in zip(loss, ntokens, codebook_weight)])
top10acc_by_codebook = [t10a*nt for t10a, nt in zip(top10acc, ntokens)]
top10acc = sum(top10acc_by_codebook)
ntokens = torch.tensor(all_ntokens).to(logits.device)
return {
"loss": loss,
"top10acc": top10acc,
"top10acc_by_codebook": top10acc_by_codebook,
"effective_ntoken": ntokens,
}
def inference(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: torch.Tensor,
mask_interval: list[torch.Tensor],
top_k: int=-100,
top_p: float=1.0,
temperature: float=1.0,
stop_repetition: int=-1,
kvcache: int=1,
silence_tokens: list[int]=[1388,1898,131],
) -> torch.Tensor:
"""
Args:
x:
A 2-D tensor of shape (1, L).
x_lens:
A 1-D tensor of shape (1,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (1, T, K).
mask_interval:
a list of tensors of shape (M, 2). contains M mask_start and mask_end. list length is actually 1, because we only support single sample inference for now
top_k: (`optional`) int
The number of highest probability tokens to keep for top-k-filtering. Default to -100.
top_p: (`optional`) float
For Neucleus sampling
temperature: (`optional`) float
The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
eog_coef: (`optional`) float
if 0, no change to eog token logits, otherwise, will adjust eog token logit based on the difference between acoustic token and phn token length
stop_repetition (`optional`) int
if not -1, will set the logits of a token that repeated this many times to be -100000, to avoid generating it again. This only apply to tokens from the first codebook
allowed_repeat_tokens (`optional`) list of ints
by inspecting the validation set, get a few tokens that indeed repeat a significant amount of time, and exclude those tokens from prevent repetition
ultimate_stop_repetition (`optional`) int
no matter that token it is, stop repetition once after this number
"""
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.ndim == 3, y.shape
if self.args.special_first:
y = y + int(self.args.n_special)
y = y.transpose(2,1) # [1,T,K] -> [1,K,T]
assert y.shape[0] == 1 and y.shape[1] == self.args.n_codebooks, y.shape # there is no padding
assert mask_interval.shape == torch.Size((1, mask_interval.shape[1], 2)), mask_interval
# make x attention mask and x_input
x_attention_mask = torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1).bool().to(x.device)
# x_attention_mask = torch.zeros(x.shape[1], x.shape[1]).bool().to(x.device)
x_input = self.text_embedding(x)
x_input = self.text_positional_embedding(x_input)
# make initial y_input
# make mask_interval and non_mask_interval
y_len = y.shape[2]
y_lens = torch.LongTensor([y_len]).to(y.device)
mask_interval = mask_interval[0]
starts = [item[0].item() for item in mask_interval] + [y_len]
ends = [0] + [item[1].item() for item in mask_interval]
mask_intervals = [[
(item[0].item(), item[1].item()) for item in mask_interval
]] # a werid name change, mask_interval is input, now is mask_intervals, with one more dimension
non_mask_intervals = [[
(ns, ne) for ns, ne in zip(ends, starts)
]]
# rearrange y
# will add have EOG in each section (SOG will be generated by the pattern class)
# but mask can be inserted later after we have shifted the input
# y could be rearranged in this way:
# [
# [tensor[4, 12], tensor[4, 45], tensor[4, 102], tensor[4, 32]], tensor[4, 22]],
# [tensor[4, 44], tensor[4, 56], tensor[4, 19]],
# ...
# ]
# for the first list of tensors (4 tensors), first 3 tensors are non_masked part, last 2 are masked part.
# NOTE #non_masked_part = #masked_part + 1
rearranged_y = self.rearrange(y, non_mask_intervals, mask_intervals)
assert rearranged_y[0][0].shape[0] == self.args.n_codebooks, rearranged_y[0][0].shape
# shift each element of y
# next we need to apply pattern shifting to each tensor, after which, we'll replace the starting tokens of each section with a token that's different from the special padding token
# [
# [empty, 1, 2, 3, eog, empty, empty, empty],
# [empty, empty, 1, 2, 3, eog, empty, empty],
# [empty, empty, empty, 1, 2, 3, eog, empty],
# [empty, empty, empty, empty, 1, 2, 3, eog]
# ]
shifted_y, patterns = self.shift(rearranged_y) # each element [K S], patterns is not used, as we directly use the original input y
assert shifted_y[0][0].shape[0] == self.args.n_codebooks, shifted_y[0][0].shape
# insert mask token at the intersction of each tensor, but *actually inserted eog as place holder*
# the position of inserted mask is also recorded
# and the mask_value, the index of the mask emb is recorded
inserted_y, mask_position, mask_value = self.insert_mask(shifted_y)
assert inserted_y[0][0].shape[0] == self.args.n_codebooks, inserted_y[0][0].shape[0]
assert inserted_y[0][1].shape == torch.Size((self.args.n_codebooks, 1)), f"this should be a mask, so should have shape {(self.args.n_codebooks, 1)}, but it's {inserted_y[0][1].shape}"
# then concat tensors that belong to the same sample (in order) then get the length of each sample, and then stack them in batch dimension, pad them with pad_token
cated_y, new_y_lens = self.cat_y(inserted_y, mask_position, y_lens) # KTB
assert cated_y.shape == torch.Size((self.args.n_codebooks, cated_y.shape[1], len(inserted_y)))
assert not (cated_y == self.args.audio_pad_token).any(), cated_y
### NOTE this is different from forward, as we will remove the masked tokens
### say there are two masked region
### the cated_y should be like
### [empty a a a a mask0 empty b b b mask1 empty c c mask0 empty]
### which means we need to take the part after the last empty out
num_mask = len(mask_position[0])//2
assert num_mask == len(mask_position[0])/2, mask_position
cated_y = cated_y[:, :mask_position[0][num_mask]+2] # of shape [K,T,B]
# logging.info(f"mask_position[0][num_mask]+2: {mask_position[0][num_mask]+2}")
more_mask_value = mask_value[0][num_mask+1:] # NOTE this will be used in the generation loop for reference for inserting mask embedding
new_y_lens[0] = mask_position[0][num_mask]+2
mask_position[0] = mask_position[0][:num_mask+1]
assert mask_position[0][num_mask]+2 == cated_y.shape[1], f"num_mask: {num_mask}, mask_position: {mask_position}, cated_y.shape: {cated_y.shape}"
# embed: remember to separately embed the mask tokens
embedded_y = self.embed_y(cated_y, mask_position, [mask_value[0][:num_mask+1]]) #BTD
# assert embedded_y.shape == torch.Size((y.shape[0], max(new_y_lens), self.args.d_model)), embedded_y.shape
# positional embedding
y_input = self.audio_positional_embedding(embedded_y)
# make attention mask and padding mask
y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y.device)
# y_lens = torch.LongTensor([y_input.shape[1]]).to(y.device)
x_padding_mask = torch.full((1,x_lens[0]), False).to(x.device)
y_padding_mask = torch.full((1,new_y_lens[0]), False).to(y.device)
codebook_eog = [False] * self.args.n_codebooks
generated = [] # doesn't contain any empty_token, contains eog
cur_generated = []
# say 0 is empty, 4 is eog
# tensor([[ 1, 2, 3, 4, 0, 0],
# [ 0, 1, 2, 3, 4, 0],
# [ 0, 0, 1, 2, 3, 4]])
num_gen = []
cur_num_gen = 0
##################### silence repetition handling #####################
##################### silence repetition handling #####################
logging.info(f"silence tokens: {silence_tokens}, note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default")
consec_silence_count = 0
prev_token = None
##################### silence repetition handling #####################
##################### silence repetition handling #####################
# prepare the cache placeholder
# n_layers, 2, bsz, num_heads, src_len, head_dim
past = torch.ones([self.args.num_decoder_layers, 2, x.shape[0]], device=x.device, dtype=torch.float32) if kvcache else None
# handle multi-span kv-cache
new_masked_span = False
def sample_helper(n_eog, logits, codebook_eog, top_k, top_p, temperature, prev_token, consec_silence_count, stop_repetition, silence_tokens, cur_num_gen):
if n_eog == 0:
logits_adjust = logits
for jj in range(1,self.args.n_codebooks):
logits_adjust[jj][self.args.eog] = -10000
logits_adjust[jj][self.args.empty_token] = -10000
##################### silence repetition handling #####################
if stop_repetition > 0 and prev_token in silence_tokens and consec_silence_count > stop_repetition:
if logits_adjust[0, prev_token] < 0:
logits_adjust[0, prev_token] = logits_adjust[0, prev_token] * (consec_silence_count - (stop_repetition-1))
else:
logits_adjust[0, prev_token] = logits_adjust[0, prev_token] / (consec_silence_count - (stop_repetition-1))
##################### silence repetition handling #####################
if type(logits_adjust) == list:
samples_list= []
for logit in logits_adjust:
# print(logit)
# print(logit.shape)
cur_sample = topk_sampling(
logit.unsqueeze(0), top_k=top_k, top_p=top_p, temperature=temperature
) # [1, 1]
samples_list.append(cur_sample)
samples = torch.cat(samples_list, dim=0) # [K, 1]
else:
samples = topk_sampling(
logits_adjust, top_k=top_k, top_p=top_p, temperature=temperature
) # [K, 1]
assert samples.shape == torch.Size((self.args.n_codebooks, 1)), f"samples.shape: {samples.shape}"
if cur_num_gen < self.args.n_codebooks-1:
for jj in range(1, self.args.n_codebooks - cur_num_gen):
samples[-jj, 0] = self.args.empty_token
if (
samples[0,0] == self.args.eog or torch.argmax(logits[0], dim=-1) == self.args.eog or y_input.shape[1] > x_lens[0] * 10
): # last one means y is already too long, shouldn't happen, but put it here
samples[0,0] = self.args.eog
codebook_eog[0] = True
##################### silence repetition handling #####################
##################### silence repetition handling #####################
if samples[0,0] in silence_tokens and samples[0,0] == prev_token:
consec_silence_count += 1
else:
consec_silence_count = 0
prev_token = samples[0,0]
##################### silence repetition handling #####################
##################### silence repetition handling #####################
return samples, codebook_eog, prev_token, consec_silence_count
else:
assert sum(codebook_eog[i] for i in range(n_eog)) == n_eog, f"codebook_eog: {codebook_eog}, but n_eog: {n_eog}"
logits_adjust = logits
for jj in range(n_eog+1,self.args.n_codebooks):
logits_adjust[jj][self.args.eog] = -10000
logits_adjust[jj][self.args.empty_token] = -10000
if type(logits_adjust) == list:
samples_list= []
for logit in logits_adjust:
cur_sample = topk_sampling(
logit.unsqueeze(0), top_k=top_k, top_p=top_p, temperature=temperature
) # [1, 1]
samples_list.append(cur_sample)
samples = torch.cat(samples_list, dim=0) # [K, 1]
else:
samples = topk_sampling(
logits_adjust, top_k=top_k, top_p=top_p, temperature=temperature
) # [K, 1]
for jj in range(n_eog):
samples[jj, 0] = self.args.empty_token
samples[n_eog, 0] = self.args.eog
codebook_eog[n_eog] = True
return samples, codebook_eog, prev_token, consec_silence_count
while True:
y_out, present = self.dec_forward(
x_input,
x_lens,
x_attention_mask,
x_padding_mask,
y_input,
new_y_lens,
y_attention_mask,
y_padding_mask,
past=past,
last_3_tokens = new_masked_span
)
if new_masked_span:
new_masked_span = False
if past != None:
past = torch.cat([past, present.to(past.dtype)], dim=-2) if past.ndim > 3 else present.to(past.dtype)
y_out = y_out[:, -1:] # only take the last one
logits = torch.stack([self.predict_layer[i](y_out) for i in range(self.args.n_codebooks)], dim=1) # [B K S card], B==S==1, so [1 K 1 card]
logits = logits.squeeze(0).squeeze(1) # [K card]
assert logits.shape == torch.Size((self.args.n_codebooks, self.n_audio_tokens[0])), f"{logits.shape}"
n_eog = sum(codebook_eog)
assert n_eog < self.args.n_codebooks
if self.args.eos > 0: # eos stands for end-of-sentence, which shouldn't be used as we are doing speech editing
for jj in range(self.args.n_codebooks):
logits[jj][self.args.eos] = -10000.
# need to use a helper function to hand different n_eog cases
samples, codebook_eog, prev_token, consec_silence_count = sample_helper(n_eog, logits, codebook_eog, top_k, top_p, temperature, prev_token, consec_silence_count, stop_repetition, silence_tokens, cur_num_gen)
cur_num_gen += 1
cur_generated.append(samples.squeeze(-1)) # [K,1] -> [K]
# get samples_emb
samples_emb = torch.stack([self.audio_embedding[k](samples[k]) for k in range(self.args.n_codebooks)], dim=0) # [K,1,D]
samples_emb = samples_emb.sum(dim=0,keepdim=True) # [1,1,D]
if sum(codebook_eog) == self.args.n_codebooks: # generation for the current span is done
# re-init
codebook_eog = [False] * self.args.n_codebooks
num_gen.append(cur_num_gen)
cur_num_gen = 0
generated.append(cur_generated)
cur_generated = []
# if the current mask span is the last span, then all done
# else
# append the next mask token and the four empty tokens to start the next generation
if len(more_mask_value) > 0:
next_mask_ind = more_mask_value.pop(0)
mask_emb = self.mask_embedding[next_mask_ind].unsqueeze(0).unsqueeze(0) # [1,1,D]
assert mask_emb.shape == torch.Size((1,1,self.args.d_model)), mask_emb.shape
empty_token = torch.LongTensor([self.args.empty_token]).to(y.device)
empty_emb = torch.stack([
self.audio_embedding[k](empty_token) for k in range(self.args.n_codebooks)], dim=0
).sum(dim=0, keepdim=True) # [1,1,D]
assert empty_emb.shape == torch.Size((1,1,self.args.d_model)), empty_emb.shape
extra_emb = torch.cat([mask_emb, empty_emb], dim=1) # [1,2,D]
samples_emb = torch.cat([samples_emb, extra_emb], dim=1) # [1,3,D] # prev_last_token, mask_token, empty token
assert samples_emb.shape == torch.Size((1,3,self.args.d_model)), f"samples_emb.shape: {samples_emb.shape}"
##################### silence repetition handling #####################
##################### silence repetition handling #####################
consec_silence_count = 0
prev_token = None
##################### silence repetition handling #####################
##################### silence repetition handling #####################
# handling kv-caching for multi-span editing
new_masked_span = True
else:
break
else:
assert samples_emb.shape == torch.Size((1,1,self.args.d_model)), f"samples_emb.shape: {samples_emb.shape}"
embedded_y = torch.cat([embedded_y, samples_emb], dim=1)
# positional embedding
y_input = self.audio_positional_embedding(embedded_y) # [B T D]
# make attention mask and padding mask
y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y.device)
new_y_lens = torch.LongTensor([y_input.shape[1]]).to(y.device)
y_padding_mask = torch.full((1,new_y_lens[0]), False).to(y.device)
assert len(generated) == num_mask, f"len(generated): {len(generated)}, num_mask: {num_mask}"
# # combine non_masked_span with generated spans
# first need to shift the generated part back
flatten_gen = []
for l, orig_span in enumerate(generated):
span = torch.stack(orig_span, dim=0) # [T K]
span = span.transpose(1,0) # [K, T]
assert span.shape[0] == self.args.n_codebooks, span.shape
unshifted_span = []
for j, s in enumerate(span):
start_from = j
end_at = - (self.args.n_codebooks - start_from)
unshifted_span.append(s[start_from:end_at])
unshifted_span = torch.stack(unshifted_span, dim=0)
assert unshifted_span.shape[1] == num_gen[l] - self.args.n_codebooks, f"len(unshifted_spans[0]): {len(unshifted_span[0])}, num_gen[l]: {num_gen[l]}"
flatten_gen.append(unshifted_span)
# logging.info(f"unshfited_span: {unshifted_span.shape}")
# raise
assert len(non_mask_intervals[0]) - 1 == len(flatten_gen), f"len(non_mask_intervals[0]): {len(non_mask_intervals[0])}, len(flatten_gen): {len(flatten_gen)}"
res = []
for orig_interval, gen in zip(non_mask_intervals[0], flatten_gen):
res.append(y[0, :, orig_interval[0]:orig_interval[1]])
res.append(gen)
res.append(y[0, :, non_mask_intervals[0][-1][0]:non_mask_intervals[0][-1][1]])
res = torch.cat(res, dim=1).unsqueeze(0) # [K,new_T] -> [1, K, new_T]
expected_y_len = y_len - sum([item[1] - item[0] for item in mask_intervals[0]]) + sum([item - self.args.n_codebooks for item in num_gen])
assert res.shape == torch.Size((1, self.args.n_codebooks, expected_y_len)), f"res.shape: {res.shape}, expected_y_len: {expected_y_len}. y_len - sum([item[1] - item[0] for item in mask_interval]) + sum([item - self.args.n_codebooks for item in num_gen]): {y_len}-{sum([item[1] - item[0] for item in mask_interval])} + {sum([item - self.args.n_codebooks for item in num_gen])}"
if self.args.special_first:
res = res - int(self.args.n_special)
return res
def inference_tts(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: torch.Tensor,
top_k: int=-100,
top_p: float=1.0,
temperature: float=1.0,
stop_repetition: int=3,
kvcache: int=1,
silence_tokens: list[int]=[1388,1898,131],
*kargs
) -> torch.Tensor:
"""
different from inference_tts, this implementation uses kvcache, which should have significant speed up
Args:
x:
A 2-D tensor of shape (1, L).
x_lens:
A 1-D tensor of shape (1,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (1, T, K).
top_k: (`optional`) int
The number of highest probability tokens to keep for top-k-filtering. Default to -100.
top_p: (`optional`) float
For Neucleus sampling
temperature: (`optional`) float
The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
"""
eog_inference = self.args.eos if self.args.eos>0 else self.args.eog
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.ndim == 3, y.shape
if self.args.special_first:
y = y + int(self.args.n_special)
y = y.transpose(2,1) # [1,T,K] -> [1,K,T]
assert y.shape[0] == 1 and y.shape[1] == self.args.n_codebooks, y.shape # there is no padding
# make x attention mask and x_input
x_attention_mask = torch.triu(torch.ones(x.shape[1], x.shape[1]), diagonal=1).bool().to(x.device)
# x_attention_mask = torch.zeros(x.shape[1], x.shape[1]).bool().to(x.device)
x_input = self.text_embedding(x)
x_input = self.text_positional_embedding(x_input)
y_len = y.shape[2]
# shift y to create the delayed pattern
shifted_y, _ = self.shift_single(y[0]) # each element [K S], patterns is not used, as we directly use the original input y
assert shifted_y.shape[0] == self.args.n_codebooks, shifted_y.shape
# below is different from forward or inference
# where we cut this shifted part
shifted_y = shifted_y[:, :-(self.args.n_codebooks-1)]
assert not (shifted_y[self.args.n_codebooks:] == self.args.empty_token).any() and not (shifted_y[self.args.n_codebooks:] == self.args.eog).any(), shifted_y
# next section in inference is insert mask at the intersection of each tensor in a sample, but we don't need to do that
# next section is concate tensors of each sample to one tensor, which we also don't need
cated_y = shifted_y.unsqueeze(-1) #[K,S]->[K,S,B]
new_y_lens = torch.LongTensor([cated_y.shape[1]]).to(cated_y.device)
assert cated_y.shape == torch.Size((self.args.n_codebooks, cated_y.shape[1], 1))
assert not (cated_y == self.args.audio_pad_token).any(), cated_y
# replace tokens in y with the embeddings, add sum codebooks up
embedded_y = torch.stack([self.audio_embedding[k](cated_y[k]) for k in range(self.args.n_codebooks)], dim=0) # [K, S, B, D]
assert embedded_y.shape[0] == self.args.n_codebooks, embedded_y.shape
assert embedded_y.shape[-1] == self.args.d_model, embedded_y.shape
embedded_y = embedded_y.sum(dim=0) # [K,S,B,D]->[S,B,D]
embedded_y = embedded_y.transpose(1,0) # [S,B,D]->[B,S,D]
# positional embedding
y_input = self.audio_positional_embedding(embedded_y)
# make attention mask and padding mask
y_attention_mask = torch.triu(torch.ones(y_input.shape[1], y_input.shape[1]), diagonal=1).bool().to(y.device)
x_padding_mask = torch.full((1,x_lens[0]), False).to(x.device)
y_padding_mask = torch.full((1,new_y_lens[0]), False).to(y.device)
# entering the generation stage
# starting from line 708
codebook_eog = [False] * self.args.n_codebooks
generated = [] # doesn't contain any empty token, contain eog
cur_generated = []
# say 0 is empty, 4 is eog
# tensor([[ 1, 2, 3, 4, 0, 0],
# [ 0, 1, 2, 3, 4, 0],
# [ 0, 0, 1, 2, 3, 4]])
num_gen = []
cur_num_gen = 0
##################### silence repetition handling #####################
##################### silence repetition handling #####################
logging.info(f"silence tokens: {silence_tokens}, note that if you are not using the pretrained encodec 6f79c6a8, make sure you specified it yourself, rather than using the default")
consec_silence_count = 0
prev_token = None
##################### silence repetition handling #####################
##################### silence repetition handling #####################
# prepare the cache placeholder
# n_layers, 2, bsz, num_heads, src_len, head_dim
past = torch.ones([self.args.num_decoder_layers, 2, x.shape[0]], device=x.device, dtype=torch.float32) if kvcache else None
def sample_helper(n_eog, logits, codebook_eog, top_k, top_p, temperature, prev_token, consec_silence_count, stop_repetition, silence_tokens, cur_num_gen):
if n_eog == 0:
logits_adjust = logits
logits_adjust[1:self.args.n_codebooks, eog_inference] = -10000
logits_adjust[1:self.args.n_codebooks, self.args.empty_token] = -10000
if cur_num_gen <= self.args.encodec_sr // 5: # this shouldn't happen, but just in case the model stopped too early
logits_adjust[0][eog_inference] = -10000
##################### silence repetition handling #####################
if stop_repetition > 0 and prev_token in silence_tokens and consec_silence_count > stop_repetition:
if logits_adjust[0, prev_token] < 0:
logits_adjust[0, prev_token] = logits_adjust[0, prev_token] * (consec_silence_count - (stop_repetition-1))