forked from Shirin1993/Arbor_diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Custom.py
359 lines (280 loc) · 12.5 KB
/
Custom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
##### import sys
import pylab as pl
#from scitools import *
import scipy.sparse
import scipy.sparse.linalg
import numpy as np
from scipy import linalg
import random as rnd
import itertools as itertools
import os
import matplotlib.pylab as plt
import pickle
import matplotlib
import sklearn.metrics
gammaP = 90 *1000 # for units
gammaD = 0.01 *1000
thP = .00011*1e6
thD = .00005*1e6
I0 = 6.0*1e-12 # synaptic input current in [A]
taudec = 1*1e-3 # synaptic input current decay time in [s]
pi = np.pi #3.14
numberOfBursts = 2
dly = 0
Deff = 220 * 1e-12 #diffusion coefficient of calcium in dendrite in [m^2/s ]
timetotal = 70*1e-3 # Total time of simulation in [s] 70
dt = .01 * 1e-3 # s #Timestep duration in [s]
time = int(timetotal / dt) # Number of steps
tau = 100 *1e-3 # Decay time of dendrite (Inactivation Time constant ) in [s]
tauspine = 100*1e-3 # Decay time of spine (Inactivation Time constant ) in [s]
delta_t = str(dt*1000)
def ttoms(milisec, dtt):
'''
convert ms to simulation time
currenttimestep : simulation timestep
dtt : timestep in [s]
'''
return int(milisec / (dtt * 1e3))
input_time = ttoms(1, dt) # first current input time
dts = ttoms(.1, dt) # time interval between single spikes [timestep]
delay = ttoms(dly, dt) # delays between 2 spines inputs [timestep]
interval = ttoms(9.0, dt) # delays between 2 bursts [timestep]
numberofspike0 = 1
numberofspike1 = 1
N_spine = 4 # number of spines
N_dend = 320 # number of dendritic segments
L = 80 * 1e-6 # 10 um #Total length of dendritic branch in [m]
dx = L / (N_dend) # Length of each dendritic segments in [m]
steps=time
xtime=np.linspace(0,(steps*dt*1e3),steps)
spine_list = [160-4, 160, 160+4, 160+4+4]
# Ca Parameters
Z = 2 # Calcium valance
Faraday = 96485.309 # Faraday constant [C/mol]
y = 0.11 # Fraction of current carried by calcium through the receptor
# Geometrical parameters
radius = 1 * 1e-6 # dendritic radius in [m]
spineradius = 1 * 1e-6 # #spine radius in [m] 0.26-1.10 /2 mean 0.68 /2 = 0.34
spine_len = 1 * 1e-6 # To be similar to Arbor
# rate of Ca influx from dend to spine neck (small hole theory) (Biess et al. 2011)
Vs = pi*spineradius*spineradius*spine_len#(4 / 3) * np.pi * spineradius ** 3 # Spine volume
# synaptic weight parameters
w0 = 0.5 # initial synaptic weight of spine 1
w1 = 0.5 # initial synaptic weight of spine 1
w2 = 0.5
w3 = 0.5
adj = np.zeros(N_dend) # dednd adjacent list (dend-spine connection)
adj[spine_list] = 1
##########################################################
B = [] # needed current convolution
for it in range(time):
B.append(I0 * np.exp(-it * dt / taudec))
B_0 = [] # needed current convolution
I0B_0 = 1*I0
for it in range(time):
B_0.append(I0B_0 * np.exp(-it * dt / taudec))
train = np.zeros((N_spine, time)) # current I(mA) list for spine
for d in range(numberOfBursts):
for i in range(numberofspike0):
train[0, d * interval + input_time + i * dts] = 1
for i in range(numberofspike1):
train[2, d * interval + input_time + i * 2*dts] = 1
# current convolution
xs = np.zeros((N_spine, time))
for spn in [0]:#range(N_spine):
cc = np.convolve(train[spn, :], B)
xs[spn, :] = cc[0:int((len(cc) + 1) / 2)]
for spn in [2]:#range(N_spine):
cc = np.convolve(train[spn, :], B_0)
xs[spn, :] = cc[0:int((len(cc) + 1) / 2)]
# creating matrix for differential eq. and defining parameters
alpha = Deff * dt / dx ** 2
beta = Deff * dt / dx ** 2
F = Deff * dt / dx ** 2
gamma = dt * y / (Z * Vs * Faraday)
##______________________________________________
dec = dt / tau
decspine = dt / tauspine
sincm = 1
if N_dend == 1:
sincm = 0
A = np.zeros((N_dend + N_spine, N_dend + N_spine))
for i in range(N_spine + 1, N_dend + N_spine - 1):
A[i, i] = 1 + 2 * F + (adj[i - N_spine]) * alpha + dec
A[N_spine, N_spine] = 1 + (sincm * F) + (adj[0]) * alpha # first dnd
A[N_dend + N_spine - 1, N_dend + N_spine - 1] = 1 + (sincm * F) + (adj[N_dend - 1]) * alpha
for i in range(N_spine, N_dend + N_spine - 1):
A[i, i + 1] = -F
for i in range(N_spine + 1, N_dend + N_spine):
A[i, i - 1] = -F
for i in range(N_spine):
A[i, i] = 1 + beta + decspine
for i in range(N_spine):
A[i, N_spine + spine_list[i]] = - alpha
for i in range(N_spine):
A[N_spine + spine_list[i], i] = - beta
b = np.zeros((N_spine + N_dend, time))
U = np.zeros((N_spine + N_dend, time))
U[0:N_spine, 0] = 0
U[N_spine:N_spine + N_dend, 0] = 0
def theta(ar): # Heaviside func for calcium thresholding
listt = np.zeros(len(ar))
for values in range(len(ar)):
if ar[values] >= 0:
listt[values] = 1
if ar[values] < 0:
listt[values] = 0
return listt
weight = np.zeros((N_spine, time))
weight[0, 0] = w0
weight[1, 0] = w1
weight[2, 0] = w2
weight[3, 0] = w3
# Solve Backward Euler for calcium diffusion eq.
for t in range(time - 1):
b[0:N_spine, t] = gamma * xs[:, t] * weight[:, t]
C = U[:, t] + b[:, t]
X = linalg.solve(A, C)
weight[:, t + 1] = weight[:, t] + dt * (gammaP * (1 - weight[:, t]) * theta(1e6 * U[0:N_spine, t] - thP) - gammaD * weight[:, t] * theta(1e6 * U[0:N_spine, t] - thD))
U[:, t + 1] = np.asarray(X).flatten()
for i in range(4):
data_to_save = np.copy( 1e-3*1e6*U[i, :])
filename = f'PCaS{i+1}_{delta_t}.pkl'
with open(filename, 'wb') as file:
pickle.dump(data_to_save, file)
print(f"Data saved to {filename} using pickle.")
for i in range(4):
data_to_savew = np.copy( weight[i, :])
filenamew = f'PWS{i+1}_{delta_t}.pkl'
with open(filenamew, 'wb') as filew:
pickle.dump(data_to_savew, filew)
print(f"Data saved to {filenamew} using pickle.")
# Plots :
delta_t = 0.01
markersizes = 3
# ca values from Arbor
S0 = np.loadtxt(f'ACaS0_{delta_t}.txt')
S1 = np.loadtxt(f'ACaS1_{delta_t}.txt')
S2 = np.loadtxt(f'ACaS2_{delta_t}.txt')
S3 = np.loadtxt(f'ACaS3_{delta_t}.txt')
coefunit = 1e3
NumSpines = 4
fig, axes = plt.subplots(NumSpines, sharex=True,figsize=(10, 8), dpi=180)
#Arbor
yk = []
ykl = []
# xk = []
xk = np.arange(0,8000,1000)
for i in range(8):
yk.append((np.round( i*1e-3*thD,2)))
ykl.append(("%.2f" % round(i*1e-3*thD, 2)))
# xtik = np.round(xk,3)
for i in range(4):
axes[i].plot([1e-3*thD]*len(S0))
axes[i].plot([1e-3*thP]*len(S0))
axes[i].set_yticks(yk,ykl)
axes[i].set_xticks(xk,xk/100)
line_color = '#000080'
axes[0].plot(coefunit *S0[::],'.',markersize = markersizes, color=line_color,alpha = 0.5, label=f'Arbor {np.round(coefunit*S0[::].max(),5)} \n final {np.round(coefunit*S0[-1].max(),3)}' )#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[1].plot(coefunit *S1[::], '.',markersize = markersizes,color=line_color,alpha = 0.5, label=f'Arbor {np.round(coefunit*S1[::].max(),5)} \n final {np.round(coefunit*S1[-1].max(),3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[2].plot(coefunit *S2[::], '.',markersize = markersizes,color=line_color,alpha = 0.5, label=f'Arbor {np.round(coefunit*S2[::].max(),5)} \n final {np.round(coefunit*S2[-1].max(),3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[3].plot(coefunit *S3[::], '.',markersize = markersizes,color=line_color,alpha = 0.5, label=f'Arbor {np.round(coefunit*S3[::].max(),5)} \n final {np.round(coefunit*S3[-1].max(),3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
#Python
delta_tp = str(dt*1000)
# Load all data from the single pickle file
filename = f'PCaS1_{delta_tp}.pkl'
with open(filename, 'rb') as file:
loaded_all_data = pickle.load(file)
# Assign each piece of data to a variable
US0 = loaded_all_data
filename = f'PCaS2_{delta_tp}.pkl'
with open(filename, 'rb') as file:
loaded_all_data = pickle.load(file)
US1 = loaded_all_data
filename = f'PCaS3_{delta_tp}.pkl'
with open(filename, 'rb') as file:
loaded_all_data = pickle.load(file)
US2 = loaded_all_data
filename = f'PCaS4_{delta_tp}.pkl'
with open(filename, 'rb') as file:
loaded_all_data = pickle.load(file)
US3 = loaded_all_data
line_color = '#008111'
axes[0].plot(US0,'.', markersize = markersizes,color=line_color,alpha = 0.5, label= f'Custom {np.round(US0.max(),5)} \n final {np.round(US0[-1],3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[1].plot(US1, '.',markersize = markersizes,color=line_color,alpha = 0.5, label= f'Custom {np.round(US1.max(),5)} \n final {np.round(US1[-1],3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[2].plot(US2, '.',markersize = markersizes,color=line_color,alpha = 0.5, label= f'Custom {np.round(US2.max(),5)} \n final {np.round(US2[-1],3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[3].plot(US3, '.',markersize = markersizes,color=line_color,alpha = 0.5, label= f'Custom {np.round(US3.max(),5)} \n final {np.round(US3[-1],3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[int(NumSpines/2)].set_ylabel("ca concentration (uM)")
axes[0].set_title("spine0")
axes[1].set_title("spine1")
axes[2].set_title("spine2")
axes[3].set_title("spine3")
axes[3].set_xlabel("t [ms]")
plt.subplots_adjust(hspace=0.9) # Increase the space between plots
for i in range(NumSpines):
axes[i].legend(loc ='upper right')
ylilmmax = 0.35
ylilmmin = 0
axes[0].set_ylim(ylilmmin,ylilmmax)
axes[2].set_ylim(ylilmmin,ylilmmax)
axes[1].set_ylim(ylilmmin,ylilmmax)
axes[3].set_ylim(ylilmmin,ylilmmax)
#Weights
delta_t = 0.01
# ca values from Arbor
WS0 = np.loadtxt(f'AWS0_{delta_t}.txt')
WS1 = np.loadtxt(f'AWS1_{delta_t}.txt')
WS2 = np.loadtxt(f'AWS2_{delta_t}.txt')
WS3 = np.loadtxt(f'AWS3_{delta_t}.txt')
coefunit = 1
NumSpines = 4
fig, axes = plt.subplots(NumSpines, sharex=True,figsize=(10, 8), dpi=180)
#Arbor
line_color = '#000080'
axes[0].plot(WS0[::],'-',markersize = 1, color=line_color,alpha = 0.5, label=f'Arbor {np.round(WS0[::].max(),5)} \n final {np.round(WS0[-1].max(),3)}' )#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[1].plot(WS1[::], '-',markersize = 1,color=line_color,alpha = 0.5, label=f'Arbor {np.round(WS1[::].max(),5)} \n final {np.round(WS1[-1].max(),3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[2].plot(WS2[::], '-',markersize = 1,color=line_color,alpha = 0.5, label=f'Arbor {np.round(WS2[::].max(),5)} \n final {np.round(WS2[-1].max(),3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[3].plot(WS3[::], '-',markersize = 1,color=line_color,alpha = 0.5, label=f'Arbor {np.round(WS3[::].max(),5)} \n final {np.round(WS3[-1].max(),3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
#Python
delta_tp = str(dt*1000)
# Load all data from the single pickle file
filename = f'PWS1_{delta_tp}.pkl'
with open(filename, 'rb') as file:
loaded_all_data = pickle.load(file)
# Assign each piece of data to a variable
WPS0 = loaded_all_data
filename = f'PWS2_{delta_tp}.pkl'
with open(filename, 'rb') as file:
loaded_all_data = pickle.load(file)
WPS1 = loaded_all_data
filename = f'PWS3_{delta_tp}.pkl'
with open(filename, 'rb') as file:
loaded_all_data = pickle.load(file)
WPS2 = loaded_all_data
filename = f'PWS4_{delta_tp}.pkl'
with open(filename, 'rb') as file:
loaded_all_data = pickle.load(file)
WPS3 = loaded_all_data
line_color = '#008111'
axes[0].plot(WPS0,'-',markersize = 1, color=line_color,alpha = 0.5, label= f'Python {np.round(WPS0.max(),5)} \n final {np.round(WPS0[-1],3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[1].plot(WPS1, '-',markersize = 1,color=line_color,alpha = 0.5, label= f'Python {np.round(WPS1.max(),5)} \n final {np.round(WPS1[-1],3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[2].plot(WPS2, '-',markersize = 1,color=line_color,alpha = 0.5, label= f'Python {np.round(WPS2.max(),5)} \n final {np.round(WPS2[-1],3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[3].plot(WPS3, '-',markersize = 1,color=line_color,alpha = 0.5, label= f'Python {np.round(WPS3.max(),5)} \n final {np.round(WPS3[-1],3)}')#color=plt.cm.terrain(f * vmax)) # , color='tab:orange')
axes[int(NumSpines/2)].set_ylabel("ca concentration (uM)")
axes[0].set_title("spine0")
axes[1].set_title("spine1")
axes[2].set_title("spine2")
axes[3].set_title("spine3")
axes[3].set_xlabel("t step")
plt.subplots_adjust(hspace=0.9) # Increase the space between plots
for i in range(NumSpines):
axes[i].legend(loc ='upper right')
ylilmmax = 1.2
ylilmmin = .3
axes[0].set_ylim(ylilmmin,ylilmmax)
axes[2].set_ylim(ylilmmin,ylilmmax)
# ylilmmax = 25
axes[1].set_ylim(ylilmmin,ylilmmax)
axes[3].set_ylim(ylilmmin,ylilmmax)
for i in range(4):
axes[i].plot([0.5]*len(WPS0), '--',c='gray')