-
Notifications
You must be signed in to change notification settings - Fork 88
/
main.py
executable file
·231 lines (203 loc) · 12.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Donny You
## Modified by: RainbowSecret, JingyiXie, LangHuang
## Microsoft Research
## Copyright (c) 2020
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import json
import os
import random
import time
import pdb
import torch
import torch.backends.cudnn as cudnn
from lib.utils.tools.logger import Logger as Log
from lib.utils.tools.configer import Configer
def str2bool(v):
""" Usage:
parser.add_argument('--pretrained', type=str2bool, nargs='?', const=True,
dest='pretrained', help='Whether to use pretrained models.')
"""
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Unsupported value encountered.')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--configs', default=None, type=str,
dest='configs', help='The file of the hyper parameters.')
parser.add_argument('--phase', default='train', type=str,
dest='phase', help='The phase of module.')
parser.add_argument('--gpu', default=[0, 1, 2, 3], nargs='+', type=int,
dest='gpu', help='The gpu list used.')
# *********** Params for data. **********
parser.add_argument('--data_dir', default=None, type=str, nargs='+',
dest='data:data_dir', help='The Directory of the data.')
parser.add_argument('--include_val', type=str2bool, nargs='?', default=False,
dest='data:include_val', help='Include validation set for training.')
# include-coarse is only provided for Cityscapes.
parser.add_argument('--include_coarse', type=str2bool, nargs='?', default=False,
dest='data:include_coarse', help='Include coarse-labeled set for training.')
parser.add_argument('--only_coarse', type=str2bool, nargs='?', default=False,
dest='data:only_coarse', help='Only include coarse-labeled set for training.')
parser.add_argument('--only_mapillary', type=str2bool, nargs='?', default=False,
dest='data:only_mapillary', help='Only include mapillary set for training.')
parser.add_argument('--only_small', type=str2bool, nargs='?', default=False,
dest='data:only_small', help='Only include small val set for testing.')
# include-atr is used to choose ATR as extra training set for LIP dataset.
parser.add_argument('--include_atr', type=str2bool, nargs='?', default=False,
dest='data:include_atr', help='Include atr set for LIP training.')
parser.add_argument('--include_cihp', type=str2bool, nargs='?', default=False,
dest='data:include_cihp', help='Include cihp set for LIP training.')
parser.add_argument('--drop_last', type=str2bool, nargs='?', default=False,
dest='data:drop_last', help='Fix bug for syncbn.')
parser.add_argument('--workers', default=None, type=int,
dest='data:workers', help='The number of workers to load data.')
parser.add_argument('--train_batch_size', default=None, type=int,
dest='train:batch_size', help='The batch size of training.')
parser.add_argument('--val_batch_size', default=None, type=int,
dest='val:batch_size', help='The batch size of validation.')
# *********** Params for checkpoint. **********
parser.add_argument('--checkpoints_root', default=None, type=str,
dest='checkpoints:checkpoints_root', help='The root dir of model save path.')
parser.add_argument('--checkpoints_name', default=None, type=str,
dest='checkpoints:checkpoints_name', help='The name of checkpoint model.')
parser.add_argument('--save_iters', default=None, type=int,
dest='checkpoints:save_iters', help='The saving iters of checkpoint model.')
parser.add_argument('--save_epoch', default=None, type=int,
dest='checkpoints:save_epoch', help='The saving epoch of checkpoint model.')
# *********** Params for model. **********
parser.add_argument('--model_name', default=None, type=str,
dest='network:model_name', help='The name of model.')
parser.add_argument('--backbone', default=None, type=str,
dest='network:backbone', help='The base network of model.')
parser.add_argument('--bn_type', default=None, type=str,
dest='network:bn_type', help='The BN type of the network.')
parser.add_argument('--multi_grid', default=None, nargs='+', type=int,
dest='network:multi_grid', help='The multi_grid for resnet backbone.')
parser.add_argument('--pretrained', type=str, default=None,
dest='network:pretrained', help='The path to pretrained model.')
parser.add_argument('--resume', default=None, type=str,
dest='network:resume', help='The path of checkpoints.')
parser.add_argument('--resume_strict', type=str2bool, nargs='?', default=True,
dest='network:resume_strict', help='Fully match keys or not.')
parser.add_argument('--resume_continue', type=str2bool, nargs='?', default=False,
dest='network:resume_continue', help='Whether to continue training.')
parser.add_argument('--resume_eval_train', type=str2bool, nargs='?', default=True,
dest='network:resume_train', help='Whether to validate the training set during resume.')
parser.add_argument('--resume_eval_val', type=str2bool, nargs='?', default=True,
dest='network:resume_val', help='Whether to validate the val set during resume.')
parser.add_argument('--gathered', type=str2bool, nargs='?', default=True,
dest='network:gathered', help='Whether to gather the output of model.')
parser.add_argument('--loss_balance', type=str2bool, nargs='?', default=False,
dest='network:loss_balance', help='Whether to balance GPU usage.')
# *********** Params for solver. **********
parser.add_argument('--optim_method', default=None, type=str,
dest='optim:optim_method', help='The optim method that used.')
parser.add_argument('--group_method', default=None, type=str,
dest='optim:group_method', help='The group method that used.')
parser.add_argument('--base_lr', default=None, type=float,
dest='lr:base_lr', help='The learning rate.')
parser.add_argument('--nbb_mult', default=1.0, type=float,
dest='lr:nbb_mult', help='The not backbone mult ratio of learning rate.')
parser.add_argument('--lr_policy', default=None, type=str,
dest='lr:lr_policy', help='The policy of lr during training.')
parser.add_argument('--loss_type', default=None, type=str,
dest='loss:loss_type', help='The loss type of the network.')
parser.add_argument('--is_warm', type=str2bool, nargs='?', default=False,
dest='lr:is_warm', help='Whether to warm training.')
# *********** Params for display. **********
parser.add_argument('--max_epoch', default=None, type=int,
dest='solver:max_epoch', help='The max epoch of training.')
parser.add_argument('--max_iters', default=None, type=int,
dest='solver:max_iters', help='The max iters of training.')
parser.add_argument('--display_iter', default=None, type=int,
dest='solver:display_iter', help='The display iteration of train logs.')
parser.add_argument('--test_interval', default=None, type=int,
dest='solver:test_interval', help='The test interval of validation.')
# *********** Params for logging. **********
parser.add_argument('--logfile_level', default=None, type=str,
dest='logging:logfile_level', help='To set the log level to files.')
parser.add_argument('--stdout_level', default=None, type=str,
dest='logging:stdout_level', help='To set the level to print to screen.')
parser.add_argument('--log_file', default=None, type=str,
dest='logging:log_file', help='The path of log files.')
parser.add_argument('--rewrite', type=str2bool, nargs='?', default=True,
dest='logging:rewrite', help='Whether to rewrite files.')
parser.add_argument('--log_to_file', type=str2bool, nargs='?', default=True,
dest='logging:log_to_file', help='Whether to write logging into files.')
# *********** Params for test or submission. **********
parser.add_argument('--test_img', default=None, type=str,
dest='test:test_img', help='The test path of image.')
parser.add_argument('--test_dir', default=None, type=str,
dest='test:test_dir', help='The test directory of images.')
parser.add_argument('--out_dir', default='none', type=str,
dest='test:out_dir', help='The test out directory of images.')
parser.add_argument('--save_prob', type=str2bool, nargs='?', default=False,
dest='test:save_prob', help='Save the logits map during testing.')
# *********** Params for env. **********
parser.add_argument('--seed', default=304, type=int, help='manual seed')
parser.add_argument('--cudnn', type=str2bool, nargs='?', default=True, help='Use CUDNN.')
# *********** Params for distributed training. **********
parser.add_argument('--local_rank', type=int, default=-1, dest='local_rank', help='local rank of current process')
parser.add_argument('--distributed', action='store_true', dest='distributed', help='Use multi-processing training.')
parser.add_argument('--use_ground_truth', action='store_true', dest='use_ground_truth', help='Use ground truth for training.')
parser.add_argument('REMAIN', nargs='*')
args_parser = parser.parse_args()
from lib.utils.distributed import handle_distributed
handle_distributed(args_parser, os.path.expanduser(os.path.abspath(__file__)))
if args_parser.seed is not None:
random.seed(args_parser.seed)
torch.manual_seed(args_parser.seed)
cudnn.enabled = True
cudnn.benchmark = args_parser.cudnn
configer = Configer(args_parser=args_parser)
data_dir = configer.get('data', 'data_dir')
if isinstance(data_dir, str):
data_dir = [data_dir]
abs_data_dir = [os.path.expanduser(x) for x in data_dir]
configer.update(['data', 'data_dir'], abs_data_dir)
project_dir = os.path.dirname(os.path.realpath(__file__))
configer.add(['project_dir'], project_dir)
if configer.get('logging', 'log_to_file'):
log_file = configer.get('logging', 'log_file')
new_log_file = '{}_{}'.format(log_file, time.strftime("%Y-%m-%d_%X", time.localtime()))
configer.update(['logging', 'log_file'], new_log_file)
else:
configer.update(['logging', 'logfile_level'], None)
Log.init(logfile_level=configer.get('logging', 'logfile_level'),
stdout_level=configer.get('logging', 'stdout_level'),
log_file=configer.get('logging', 'log_file'),
log_format=configer.get('logging', 'log_format'),
rewrite=configer.get('logging', 'rewrite'))
model = None
if configer.get('method') == 'fcn_segmentor':
if configer.get('phase') == 'train':
from segmentor.trainer import Trainer
model = Trainer(configer)
elif configer.get('phase') == 'test':
from segmentor.tester import Tester
model = Tester(configer)
elif configer.get('phase') == 'test_offset':
from segmentor.tester_offset import Tester
model = Tester(configer)
else:
Log.error('Method: {} is not valid.'.format(configer.get('task')))
exit(1)
if configer.get('phase') == 'train':
model.train()
elif configer.get('phase').startswith('test') and configer.get('network', 'resume') is not None:
model.test()
else:
Log.error('Phase: {} is not valid.'.format(configer.get('phase')))
exit(1)