-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathneural_network.py
executable file
·325 lines (283 loc) · 12.1 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#! /usr/bin/env python
# coding: utf-8
"""This file is part of DeepIceLearning
DeepIceLearning is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import sys
import os
from six.moves import configparser
import socket
import argparse
import h5py
sys.path.append(os.path.join(os.path.abspath(".."),'lib'))
print os.path.abspath("..")
import model_parse as mp
import importlib
def parseArguments():
"""Parse the command line arguments
Returns:
args : Dictionary containing the command line arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--main_config",
help="main config file, user-specific",
type=str, default='default.cfg')
parser.add_argument(
"--project", help="The name for the Project",
type=str, default='some_NN')
parser.add_argument(
"--input",
help="Name of the input files seperated by :",
type=str, default='all')
parser.add_argument(
"--model",
help="Name of the File containing the model",
type=str, default='simple_CNN.cfg')
parser.add_argument(
"--virtual_len",
help="Use an artifical array length (for debugging only!)",
type=int, default=-1)
parser.add_argument(
"--continue",
help="Absolute path to a folder to continue training of the network",
type=str, default='None')
parser.add_argument(
"--load_weights",
help="Give a path to pre-trained model weights",
type=str, default='None')
parser.add_argument(
"--ngpus",
help="Number of GPUs for parallel training",
type=int, default=1)
parser.add_argument(
"--version",
action="version", version='%(prog)s - Version 1.0')
parser.add_argument(
"--save_folder",
help="Folder for saving the output",
type=str, default='None')
args = parser.parse_args()
return args.__dict__
# Read config and load keras stuff #############
print('Running on Hostcomputer {}'.format(socket.gethostname()))
args = parseArguments()
parser = configparser.ConfigParser()
if args['continue'] != 'None' and args['main_config'] == 'None':
save_path = args['continue']
config_file = os.path.join(save_path, 'config.cfg')
else:
config_file = args['main_config']
try:
parser.read(config_file)
except Exception:
raise Exception('Config File is missing!!!!')
parser_dict = {s: dict(parser.items(s)) for s in parser.sections()}
backend = parser.get('Basics', 'keras_backend')
os.environ["KERAS_BACKEND"] = backend
if backend == 'theano':
os.environ["THEANO_FLAGS"] = "mode=FAST_RUN,device=gpu,floatX=float32"
cuda_path = parser.get('Basics', 'cuda_installation')
if not os.path.exists(cuda_path):
raise Exception('Given Cuda installation does not exist!')
if cuda_path not in os.environ['LD_LIBRARY_PATH'].split(os.pathsep):
print('Setting Cuda Path...')
os.environ["PATH"] += os.pathsep + cuda_path
os.environ['LD_LIBRARY_PATH'] += os.pathsep + cuda_path
try:
print('Attempt to Restart with new Cuda Path')
os.execv(sys.argv[0], sys.argv)
except Exception, exc:
print 'Failed re-exec:', exc
sys.exit(1)
print(os.environ['LD_LIBRARY_PATH'])
print(os.environ['PATH'])
if backend == 'tensorflow':
print('Run with backend Tensorflow')
import tensorflow as tf
print('Version {}, \n Path {}'.format(tf.__version__, tf.__path__))
elif backend == 'theano':
print('Run with backend Theano')
import theano
else:
raise NameError('Choose tensorflow or theano as keras backend')
import numpy as np
import datetime
import math
import argparse
import time
import shelve
from keras.utils import multi_gpu_model
from keras.utils import plot_model
from keras.callbacks import CSVLogger, EarlyStopping
#import individual_loss
import transformations
from functions import *
if __name__ == "__main__":
# Process Command Line Arguments
print("\n ---------")
print("You are running the script with arguments: ")
for a in args.keys():
print('{} : {}'.format(a, args[a]))
print("--------- \n")
if args['continue'] != 'None':
save_path = args['continue']
run_info = np.load(os.path.join(save_path, 'run_info.npy'))[()]
mc_location = parser.get('Basics', 'mc_path')
input_files = run_info['Files']
if input_files == "['all']":
input_files = os.listdir(mc_location)
conf_model_file = args['model']
print "Continuing training. Loaded dict : ", run_info
print "Input files: ", input_files
# Build-up a new Model
else:
mc_location = parser.get('Basics', 'mc_path')
conf_model_file = args['model']
if args['input'] == 'all':
input_files = [f for f in os.listdir(mc_location)
if os.path.isfile(
os.path.join(mc_location, f)) and f[-3:] == '.h5']
print('Use the following input files for training: {}'.
format(input_files))
else:
input_files = (args['input']).split(':')
if args['save_folder'] != 'None':
save_path = args['save_folder']
elif 'save_path' in parser_dict['Basics'].keys():
save_path = parser.get('Basics', 'save_path')
elif 'train_folder' in parser_dict["Basics"].keys():
today = str(datetime.datetime.now()).\
replace(" ", "-").split(".")[0].replace(":", "-")
project_name = args['project']
save_path = os.path.join(
parser.get('Basics', 'train_folder'),
'{}/{}'.format(project_name, today))
else:
raise Exception(
'I have no clue where to save the training results')
if not os.path.exists(save_path):
os.makedirs(save_path)
if not os.path.exists(save_path + "/model_all_epochs"):
os.makedirs(save_path + "/model_all_epochs")
if not os.path.exists(save_path + "/model_all_epochs/batch"):
os.makedirs(save_path + "/model_all_epochs/batch")
train_val_test_ratio = [
float(parser.get('Training_Parameters', 'training_fraction')),
float(parser.get('Training_Parameters', 'validation_fraction')),
float(parser.get('Training_Parameters', 'test_fraction'))]
file_len = read_input_len_shapes(mc_location,
input_files,
virtual_len=args['virtual_len'])
train_frac = float(
train_val_test_ratio[0]) / np.sum(train_val_test_ratio)
valid_frac = float(
train_val_test_ratio[1]) / np.sum(train_val_test_ratio)
train_inds = [(0, int(tot_len * train_frac)) for tot_len in file_len]
valid_inds = [(int(tot_len * train_frac),
int(tot_len * (train_frac + valid_frac)))
for tot_len in file_len]
test_inds = [(int(tot_len * (train_frac + valid_frac)), tot_len)
for tot_len in file_len]
print('Index ranges used for training: {} \n'.format(train_inds))
print('Index ranges used for validation: {} \n'.format(valid_inds))
print('Index ranges used for testing: {} \n'.format(test_inds))
w_func_str = parser.get('Training_Parameters','weighting')
print('Use Weighting Function {}'.format(w_func_str))
if w_func_str != 'None':
mod = importlib.import_module('weighting')
w_func = getattr(mod, w_func_str)
w_func_gen = w_func(input_files, mc_location)
else:
w_func_gen = None
# create model (new implementation, functional API of Keras)
base_model, inp_shapes, inp_trans, out_shapes, out_trans, loss_dict, mask_func = \
mp.parse_functional_model(
conf_model_file,
os.path.join(mc_location, input_files[0]))
# Choosing the Optimizer
optimizer_used = chose_optimizer(parser.get('Training_Parameters', 'optimizer'),
float(parser.get('Training_Parameters', 'learning_rate')))
# Multi GPU stuff
ngpus = args['ngpus']
if ngpus > 1:
model_serial = read_NN_weights(args, base_model)
model = multi_gpu_model(model_serial, gpus=ngpus)
equal_len = True
else:
model = read_NN_weights(args, base_model)
model_serial = model
equal_len = False
# Compile the model with the given settings
model.compile(optimizer=optimizer_used, **loss_dict)
print(os.system("nvidia-smi"))
# save run info
if args['continue'] == 'None':
run_info = dict()
run_info['Files'] = input_files
run_info['mc_location'] = mc_location
run_info['Test_Inds'] = test_inds
run_info['inp_shapes'] = inp_shapes
run_info['out_shapes'] = out_shapes
run_info['inp_trans'] = inp_trans
run_info['out_trans'] = out_trans
#run_info['loss_dict'] = loss_dict
np.save(os.path.join(save_path, 'run_info.npy'), run_info)
# Train the Model
batch_size = int(parser.get("GPU", "request_gpus")) * int(
parser.get('Training_Parameters', 'single_gpu_batch_size'))
file_handlers = [os.path.join(mc_location, file_name)
for file_name in input_files]
# saving model every epoch
all_epoch_folder = os.path.join(save_path, "model_all_epochs")
if not os.path.exists(all_epoch_folder):
os.makedirs(all_epoch_folder)
os.makedirs(os.path.join(all_epochs_folder, "batch"))
print('Created Folder {}'.format(all_epoch_folder))
divider = int(parser.get('Training_Parameters', 'epoch_divider'))
training_steps = int(np.sum([math.ceil((1.*(k[1]-k[0])/batch_size)) for k in train_inds])/divider)
validation_steps = int(np.sum([math.ceil((1.*(k[1]-k[0])/batch_size)) for k in valid_inds]))
best_model = ParallelModelCheckpoint(
model = model_serial,
filepath= os.path.join(save_path, "best_val_loss.npy"),
monitor='val_loss',
verbose=int(parser.get('Training_Parameters', 'verbose')),
save_best_only=True,
mode='auto',
period=1)
model.fit_generator(
generator_v2(
batch_size, file_handlers, train_inds, inp_shapes, inp_trans,
out_shapes, out_trans, weighting_function=w_func_gen,
equal_len=equal_len, mask_func=mask_func),
steps_per_epoch=training_steps,
validation_data=generator_v2(
batch_size, file_handlers, valid_inds, inp_shapes,
inp_trans, out_shapes, out_trans, weighting_function=w_func_gen,
equal_len=equal_len, valid=True),
validation_steps=validation_steps,
callbacks=[CSVLogger(os.path.join(save_path,'loss_logger.csv'), append=True),
EarlyStopping(min_delta=int(parser.get('Training_Parameters', 'delta')),
patience=int(parser.get('Training_Parameters', 'patience')),
verbose=int(parser.get('Training_Parameters', 'verbose')),
monitor='val_loss'),
best_model,
# every_model(model_serial,
# os.path.join(save_path, "model_all_epochs/weights_{epoch:02d}.npy"),
# int(parser.get('Training_Parameters', 'verbose'))),
MemoryCallback()],
# WeightsSaver(int(parser.get('Training_Parameters', 'save_every_x_batches')), save_path)],
epochs=int(parser.get('Training_Parameters', 'epochs')),
verbose=int(parser.get('Training_Parameters', 'verbose')),
max_queue_size=int(parser.get('Training_Parameters', 'max_queue_size')),
use_multiprocessing=False)
print('\n Finished .... Exit.....')