-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathIOI 19-vision.cpp
313 lines (289 loc) · 11 KB
/
IOI 19-vision.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
/*
* XOR all the diagonals in both directions:
* - (0, 0); (0, 1), (1, 0); (0, 2), (1, 1), (2, 0); etc
* - (H-1, 0); (H-2, 0), (H-1, 1); (H-3, 0), (H-2, 1), (H-1, 2); etc
*
* Note that at least one of the diagonals will have two 1's, representing the two diagonals that the black
* squares are located on. Let's say that the distance between these two 1's is `a` and `b` respectively
* for the two sets of diagonals. The distance between the two black squares is max(a, b).
*
* Therefore, the distance between the two black squares is exactly K if max(a, b) = K. How to calculate max(a, b)?
*
* We can split this into two parts: first, either a or b must be at least K. second, both a and b have to be at most K.
*
* Let's do a "prefix xor" on the diagonals. If the XOR of diagonals was: 0 0 1 0 0 0 1 0 0 (k = 4 in this example)
* we will XOR each number w/ the previous number to get 0 0 1 1 1 1 0 0 0.
*
* To check the first condition, that either a or b must be at least K, we will do the following for each diagonal direction:
* - add_or(add_and(i, i+k-1) for all valid i)
* if result of add_or is true for either diagonal direction, then first condition met.
*
* To check the second condition, that a and b must be at most K, we can basically check to see if either a or b is >= K+1:
* - add_or(add_and(i, i+k) for all valid i)
* if result of add_or is true for _either_ diagonal, then the second condition is _not_ met.
*
* Therefore our complete condition is:
* add_and({
* add_or({
* add_or(condition_1_diagonal_1),
* add_or(condition_1_diagonal_2),
* }),
* add_not(add_or(condition_2_diagonal_1)),
* add_not(add_or(condition_2_diagonal_2))
* });
*/
//#pragma GCC optimize ("O3")
//#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <utility>
using namespace std;
template<class T> using min_heap = priority_queue<T, vector<T>, greater<T>>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define F0R1(i, a) for (int i=1; i<=(a); i++)
#define FORd(i, a, b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i, a) for (int i = (a)-1; i >= 0; i--)
#define trav(a, x) for (auto& a : x)
#define MIN(a, b) a = min(a, b)
#define MAX(a, b) a = max(a, b)
#define INF 1000000010
#define LL_INF 4500000000000000000LL
#define LSOne(S) (S & (-S))
#define EPS 1e-9
#define pA first
#define pB second
#define mp make_pair
#define mt make_tuple
#define pb push_back
#define PI acos(-1.0)
// #define MOD (int)(2e+9+11)
#define MOD (int)(1e+9+7)
#define SET(vec, val, size) for (int i = 0; i < size; i++) vec[i] = val;
#define SET2D(arr, val, dim1, dim2) F0R(i, dim1) F0R(j, dim2) arr[i][j] = val;
#define SET3D(arr, val, dim1, dim2, dim3) F0R(i, dim1) F0R(j, dim2) F0R(k, dim3) arr[i][j][k] = val;
#define SET4D(arr, val, dim1, dim2, dim3, dim4) F0R(i, dim1) F0R(j, dim2) F0R(k, dim3) F0R(l, dim4) arr[i][j][k][l] = val;
#define lb lower_bound
#define ub upper_bound
#define sz(x) (int)x.size()
#define beg(x) x.begin()
#define en(x) x.end()
#define all(x) beg(x), en(x)
#define resz resize
#define SORT(vec) sort(all(vec))
#define RSORT(vec) sort(vec.rbegin(),vec.rend())
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> ii;
typedef pair<int, ii> iii;
typedef pair<ll, ll> pll;
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<iii> viii;
typedef vector<ll> vl;
// @formatter:off
// Source: Benq (https://github.com/bqi343/USACO) [Modified]
namespace input {
template<class T> void re(complex<T>& x);
template<class T1, class T2> void re(pair<T1,T2>& p);
template<class T> void re(vector<T>& a);
template<class T, size_t SZ> void re(array<T,SZ>& a);
template<class T> void reA(T A[], int sz);
template<class T> void re(T& x) { cin >> x; }
void re(double& x) { string t; re(t); x = stod(t); }
void re(ld& x) { string t; re(t); x = stold(t); }
template<class Arg, class... Args> void re(Arg& first, Args&... rest) {
re(first); re(rest...);
}
template<class T1, class T2> void re(pair<T1,T2>& p) { re(p.pA,p.pB); }
template<class T> void re(vector<T>& a) { F0R(i,sz(a)) re(a[i]); }
template<class T, size_t SZ> void re(array<T,SZ>& a) { F0R(i,SZ) re(a[i]); }
template<class T> void reA(T A[], int sz) { F0R(i, sz) re(A[i]); }
void setupIO(const string &PROB = "") {
ios::sync_with_stdio(false);
cin.tie(nullptr);
if (PROB.length() != 0) {
ifstream infile(PROB + ".in");
if (infile.good()) {
freopen((PROB + ".in").c_str(), "r", stdin);
freopen((PROB + ".out").c_str(), "w", stdout);
}
}
}
}
using namespace input;
namespace output {
template<class T1, class T2> void prD(const pair<T1,T2>& x);
template<class T, size_t SZ> void prD(const array<T,SZ>& x);
template<class T> void prD(const vector<T>& x);
template<class T> void prD(const set<T>& x);
template<class T1, class T2> void prD(const map<T1,T2>& x);
template<class T1, class T2> void pr(const pair<T1,T2>& x);
template<class T, size_t SZ> void pr(const array<T,SZ>& x);
template<class T> void pr(const vector<T>& x);
template<class T> void pr(const set<T>& x);
template<class T1, class T2> void pr(const map<T1,T2>& x);
template<class T> void prD(const T& x) { cout << x; }
template<class Arg, class... Args> void prD(const Arg& first, const Args&... rest) {
prD(first); prD(rest...);
}
template<class T1, class T2> void prD(const pair<T1,T2>& x) {
prD("{",x.pA,", ",x.pB,"}");
}
template<class T> void prDContain(const T& x) {
prD("{");
bool fst = 1; for (const auto& a: x) prD(!fst?", ":"",a), fst = 0; // const needed for vector<bool>
prD("}");
}
template<class T, size_t SZ> void prD(const array<T,SZ>& x) { prDContain(x); }
template<class T> void prD(const vector<T>& x) { prDContain(x); }
template<class T> void prD(const set<T>& x) { prDContain(x); }
template<class T1, class T2> void prD(const map<T1,T2>& x) { prDContain(x); }
void psD() { prD("\n"); }
template<class Arg> void psD(const Arg& first) {
prD(first); psD(); // no space at end of line
}
template<class Arg, class... Args> void psD(const Arg& first, const Args&... rest) {
prD(first," "); psD(rest...); // print w/ spaces
}
template<class T> void pr(const T& x) { cout << x; }
template<class Arg, class... Args> void pr(const Arg& first, const Args&... rest) {
pr(first); pr(rest...);
}
template<class T1, class T2> void pr(const pair<T1,T2>& x) {
pr(x.pA, " ", x.pB);
}
template<class T> void prContain(const T& x) {
bool fst = 1; for (const auto& a: x) pr(!fst?" ":"",a), fst = 0; // const needed for vector<bool>
}
template<class T, size_t SZ> void pr(const array<T,SZ>& x) { prContain(x); }
template<class T> void pr(const vector<T>& x) { prContain(x); }
template<class T> void pr(const set<T>& x) { prContain(x); }
template<class T1, class T2> void pr(const map<T1,T2>& x) { prContain(x); }
void ps() { pr("\n"); }
template<class Arg> void ps(const Arg& first) {
pr(first); ps(); // no space at end of line
}
template<class Arg, class... Args> void ps(const Arg& first, const Args&... rest) {
pr(first," "); ps(rest...); // print w/ spaces
}
}
using namespace output;
// @formatter:on
#include "vision.h"
void construct_network(int H, int W, int K) {
if (H >= 2 && W >= 2) { // General case code
vi diagonal1;
F0Rd(i, H) {
vi diag;
for (int a = i, b = 0; a < H && b < W; a++, b++) {
diag.pb(a*W+b);
}
if (i == H-1) diagonal1.pb(add_xor(diag));
else diagonal1.pb(add_xor({diagonal1.back(), add_xor(diag)}));
}
FOR(j, 1, W) {
vi diag;
for (int a = 0, b = j; a < H && b < W; a++, b++) {
diag.pb(a*W+b);
}
diagonal1.pb(add_xor({diagonal1.back(), add_xor(diag)}));
}
vi diagonal2;
F0R(j, W) {
vi diag;
for (int a = 0, b = j; a < H && b >= 0; a++, b--) {
diag.pb(a*W+b);
}
if (j == 0) diagonal2.pb(add_xor(diag));
else diagonal2.pb(add_xor({diagonal2.back(), add_xor(diag)}));
}
FOR(i, 1, H) {
vi diag;
for (int a = i, b = W - 1; a < H && b >= 0; a++, b--) {
diag.pb(a*W+b);
}
diagonal2.pb(add_xor({diagonal2.back(), add_xor(diag)}));
}
// If number of 1s > K, fail
vi diag1check;
F0R(i, sz(diagonal1) - K) {
diag1check.pb(add_and({diagonal1[i], diagonal1[i + K]}));
}
vi diag2check;
F0R(i, sz(diagonal2) - K) {
diag2check.pb(add_and({diagonal2[i], diagonal2[i + K]}));
}
// If number of 1s == K, good
vi diag1check2;
F0R(i, sz(diagonal1) - (K-1)) {
diag1check2.pb(add_and({diagonal1[i], diagonal1[i + K - 1]}));
}
vi diag2check2;
F0R(i, sz(diagonal2) - (K-1)) {
diag2check2.pb(add_and({diagonal2[i], diagonal2[i + K - 1]}));
}
add_and({
add_or({
add_or(diag1check2),
add_or(diag2check2),
}),
add_not(add_or(diag1check)),
add_not(add_or(diag2check))
});
} else if (H >= 2 && W >= 2 && K == 1) { // Code to solve 7th case
// Step 1: XOR all rows
vi xor_rows;
F0R(i, H) {
vi list;
F0R(j, W) {
int k = i*W+j;
list.pb(k);
}
xor_rows.pb(add_xor(list));
}
int inSameRow = add_not(add_or(xor_rows));
// Step 2: XOR all cols
vi xor_cols;
F0R(i, W) {
vi list;
F0R(j, H) {
int k = j*W+i;
list.pb(k);
}
xor_cols.pb(add_xor(list));
}
int inSameCol = add_not(add_or(xor_cols));
// Step 3: AND adjacent rows
vi and_adjRows;
F0R(i, H-1) {
and_adjRows.pb(add_and({xor_rows[i], xor_rows[i+1]}));
}
int isAdjRow = add_or(and_adjRows);
// Step 4: AND adjacent cols
vi and_adjCols;
F0R(i, W-1) {
and_adjCols.pb(add_and({xor_cols[i], xor_cols[i+1]}));
}
int isAdjCol = add_or(and_adjCols);
add_or({add_and({isAdjRow, inSameCol}), add_and({isAdjCol, inSameRow})});
} else { // Brute force code
vector<ii> opts;
F0R(i, H) {
F0R(j, W) {
F0R(k, H) {
F0R(l, W) {
if (abs(k - i) + abs(l - j) == K) {
opts.pb({i * W + j, k * W + l});
}
}
}
}
}
vi final;
trav(x, opts) {
final.pb(add_and({x.pA, x.pB}));
}
add_or(final);
}
}