diff --git a/dataset/ImageData/code/image_dataset.py b/dataset/ImageData/code/image_dataset.py index 7c7680b..31e0a59 100644 --- a/dataset/ImageData/code/image_dataset.py +++ b/dataset/ImageData/code/image_dataset.py @@ -1,9 +1,102 @@ import os import requests -from ColorExtraction import color_checker # Replace with your color extraction function +import hashlib +import json import csv +from ColorExtraction import color_checker -# Replace with your Unsplash API key + +def get_image(emotion, api_key, download_directory): + # Define the search query + query = f"{emotion} emotion" + + # Define the API endpoint + endpoint = "https://api.unsplash.com/search/photos" + + # Set up the request headers with your API key + headers = { + "Authorization": f"Client-ID {api_key}" + } + + # Parameters for the search + params = { + "query": query, + "per_page": 10 # Number of images to fetch per emotion + } + + # Send the request to the Unsplash API + response = requests.get(endpoint, headers=headers, params=params) + + if response.status_code == 200: + data = response.json() + images = [] + for i, image_info in enumerate(data["results"]): + image_url = image_info["urls"]["regular"] + image_hash = hashlib.md5(image_url.encode()).hexdigest() + response = requests.get(image_url) + + if response.status_code == 200: + with open(f"{download_directory}/{emotion}_{i}.jpg", "wb") as file: + file.write(response.content) + images.append({"image_url": image_url, "image_hash": image_hash}) + return images + return [] + + +def make_csv(csv_dataset, file_path): + with open(file_path, mode="w", newline="") as csv_file: + fieldnames = ["emotion", "image_url", "image_hash"] + writer = csv.DictWriter(csv_file, fieldnames=fieldnames) + writer.writeheader() + writer.writerows(csv_dataset) + + +def make_json(json_dataset, file_path): + with open(file_path, "w") as json_file: + json.dump(json_dataset, json_file, indent=4) + + +def create_emotion_dataset(api_key, emotions, download_directory): + json_dataset = [] + csv_dataset = [] + + for emotion in emotions: + images = get_image(emotion, api_key, download_directory) + + if images: + for image in images: + image_url = image["image_url"] + image_hash = image["image_hash"] + + # Process the downloaded image + color_hues = color_checker(image_url, showImg=False) + + # Append the data to the CSV dataset + csv_dataset.append({ + "emotion": emotion, + "image_url": image_url, + "image_hash": image_hash + }) + + # Add data to the JSON dataset + json_dataset.append({ + emotion: { + image_hash: { + "HEX": color_hues, + "RGB": [tuple(int(color.lstrip('#')[i:i+2], 16) for i in (0, 2, 4)) for color in color_hues] + } + } + }) + + else: + print(f"Failed to download images for {emotion}") + + make_csv(csv_dataset, "./data/emotion_dataset.csv") + make_json(json_dataset, "./data/emotion_hues.json") + print("Successfully completed") + + +# Replace these with your actual values UNSPLASH_API_KEY = "TOKEN" # insert your token # List of emotions @@ -34,8 +127,8 @@ "relief", "remorse", "sadness", + "neutral", "surprise", - "neutral" ] # Directory to save the downloaded images @@ -45,70 +138,4 @@ if not os.path.exists(download_directory): os.makedirs(download_directory) -# Initialize the dataset -emotion_dataset = [] - -# Fetch images for each emotion and process them -for emotion in emotions: - # Define the search query - query = f"{emotion} emotion" - - # Define the API endpoint - endpoint = "https://api.unsplash.com/search/photos" - - # Set up the request headers with your API key - headers = { - "Authorization": f"Client-ID {UNSPLASH_API_KEY}" - } - - # Parameters for the search - params = { - "query": query, - "per_page": 1 # Number of images to fetch per emotion - } - - # Send the request to the Unsplash API - response = requests.get(endpoint, headers=headers, params=params) - - if response.status_code == 200: - data = response.json() - for i, image_info in enumerate(data["results"]): - image_url = image_info["urls"]["regular"] - response = requests.get(image_url) - if response.status_code == 200: - with open(f"{download_directory}/{emotion}_{i}.jpg", "wb") as file: - file.write(response.content) - - # Process the downloaded image - image_path = f"{download_directory}/{emotion}_{i}.jpg" - - # Call the color extraction function to get color hues - color_hues = color_checker(image_path, showImg=False) - - # Append the data to the dataset - emotion_dataset.append({ - "emotion": emotion, - "color_hues": color_hues, - "image_url": image_url - }) - else: - print(f"Failed to download image for {emotion} - Image {i}") - else: - print(f"Failed to fetch images for {emotion}") - -print("Downloaded images and extracted color hues for all emotions.") - -# Define the path where you want to save the CSV file -csv_file_path = "emotion_dataset.csv" - -# Write the dataset to a CSV file -with open(csv_file_path, mode="w", newline="") as csv_file: - fieldnames = ["emotion", "color_hues", "image_url"] - writer = csv.DictWriter(csv_file, fieldnames=fieldnames) - - writer.writeheader() - for entry in emotion_dataset: - writer.writerow(entry) - -print(f"Dataset saved as {csv_file_path}.") - +create_emotion_dataset(UNSPLASH_API_KEY, emotions, download_directory)