-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexperiments_majority.py
58 lines (50 loc) · 2.46 KB
/
experiments_majority.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from graph_estimators import *
from experiments_base import *
np.random.seed(1000)
params = get_params()
params['n'] = 200 # size of the graph
params['Mutrue'] = np.array([[.4,.6],[.6,.4]])# [bernoulli]
params['Wtrue'] = np.array([[.9,.2],[.2,.9]])
params['k'] = params['Wtrue'].shape[0] # number of communities
params['xitrue'] = .2 # [lazy]
params['start_time'] = time.time()
params['spectral_adversarial'] = False
params['total_time'] = 4 # power of 2, number of additional graph snapshots
params['minority_pct_ub'] = 0.49
params['with_majority_dynamics'] = True
params['dynamic'] = 'lazy'
params['unify_method'] = 'Spectral-Mean'
params['compare_unify'] = False
params['only_unify'] = False
GT = generate_graph_sequence(params)
# #Diagnostics
# print([len(G.nodes()) for G in GT])
# for t in range(len(GT)-1): #minorities only matter upto the last but one graph
# print(t,get_minority_nodes(GT[t]))
# print([x for x in GT[3].nodes(data=True) if x[1]['majority']==0])
assert len(GT) > 1 #there has to be a second graph to estimate minority labels for
# print('all nodes at ',0,GT[0].nodes)
GTmr = remove_minorities(GT)
GTsamesized,mapping_samesized = get_same_sized_graph_sequence(GTmr)
Gmajority = {}
Gminority = {}
gmajority = {}
gminority = {}
# for t in range(1,len(GT)-1): #for a t value, we have majorities upto t-1 and some nodes have made minority transitions at t
t = 1 #time index at which we want to estimate the labels of all nodes (some of which were minority in the previous)
# print('all nodes at ',t,GTmr[t-1].nodes())
# print('majority',[x[0] for x in GT[t-1].nodes(data=True) if x[1]['majority']==1])
# print('minority',[x[0] for x in GT[t-1].nodes(data=True) if x[1]['majority']==0])
Gmajority[t],Gminority[t] = create_two_SBM_graphs(GT,t)
assert len(Gminority[t]) > params['k']
gminority[t] = get_communities_single_graph_index_wrapper(Gminority[t],params['k'])
gmajority[t] = get_communities_single_graph_index_wrapper(Gmajority[t],params['k'])
# max([x for x in gminority[t]]+[x for x in gmajority[t]])
log = estimate_lazy(params,GTsamesized)
print(log['xifinal'])
gestimated = estimate_communities_including_minorities(params,GT,t,gmajority[t],gminority[t],log['xifinal'])
gtrue = {x[0]:x[1]['group'][0] for x in GT[t].nodes(data=True)}
# print(error_between_groups(gestimated,gtrue))
print(error_between_subsets(GT,t,gtrue,gestimated,'minority'))
print(error_between_subsets(GT,t,gtrue,gestimated,'majority'))
print(error_between_groups(gestimated,gtrue))