forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
datasets.py
235 lines (178 loc) · 6.16 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#! /usr/bin/env python2
"""
Common functions to load datasets and compute their ground-truth
"""
import time
import numpy as np
import faiss
import pdb
import sys
# set this to the directory that contains the datafiles.
# deep1b data should be at simdir + 'deep1b'
# bigann data should be at simdir + 'bigann'
simdir = '/mnt/vol/gfsai-east/ai-group/datasets/simsearch/'
#################################################################
# Small I/O functions
#################################################################
def ivecs_read(fname):
a = np.fromfile(fname, dtype='int32')
d = a[0]
return a.reshape(-1, d + 1)[:, 1:].copy()
def fvecs_read(fname):
return ivecs_read(fname).view('float32')
def ivecs_mmap(fname):
a = np.memmap(fname, dtype='int32', mode='r')
d = a[0]
return a.reshape(-1, d + 1)[:, 1:]
def fvecs_mmap(fname):
return ivecs_mmap(fname).view('float32')
def bvecs_mmap(fname):
x = np.memmap(fname, dtype='uint8', mode='r')
d = x[:4].view('int32')[0]
return x.reshape(-1, d + 4)[:, 4:]
def ivecs_write(fname, m):
n, d = m.shape
m1 = np.empty((n, d + 1), dtype='int32')
m1[:, 0] = d
m1[:, 1:] = m
m1.tofile(fname)
def fvecs_write(fname, m):
m = m.astype('float32')
ivecs_write(fname, m.view('int32'))
#################################################################
# Dataset
#################################################################
def sanitize(x):
return np.ascontiguousarray(x, dtype='float32')
class ResultHeap:
""" Combine query results from a sliced dataset """
def __init__(self, nq, k):
" nq: number of query vectors, k: number of results per query "
self.I = np.zeros((nq, k), dtype='int64')
self.D = np.zeros((nq, k), dtype='float32')
self.nq, self.k = nq, k
heaps = faiss.float_maxheap_array_t()
heaps.k = k
heaps.nh = nq
heaps.val = faiss.swig_ptr(self.D)
heaps.ids = faiss.swig_ptr(self.I)
heaps.heapify()
self.heaps = heaps
def add_batch_result(self, D, I, i0):
assert D.shape == (self.nq, self.k)
assert I.shape == (self.nq, self.k)
I += i0
self.heaps.addn_with_ids(
self.k, faiss.swig_ptr(D),
faiss.swig_ptr(I), self.k)
def finalize(self):
self.heaps.reorder()
def compute_GT_sliced(xb, xq, k):
print "compute GT"
t0 = time.time()
nb, d = xb.shape
nq, d = xq.shape
rh = ResultHeap(nq, k)
bs = 10 ** 5
xqs = sanitize(xq)
db_gt = faiss.index_cpu_to_all_gpus(faiss.IndexFlatL2(d))
# compute ground-truth by blocks of bs, and add to heaps
for i0 in range(0, nb, bs):
i1 = min(nb, i0 + bs)
xsl = sanitize(xb[i0:i1])
db_gt.add(xsl)
D, I = db_gt.search(xqs, k)
rh.add_batch_result(D, I, i0)
db_gt.reset()
print "\r %d/%d, %.3f s" % (i0, nb, time.time() - t0),
sys.stdout.flush()
print
rh.finalize()
gt_I = rh.I
print "GT time: %.3f s" % (time.time() - t0)
return gt_I
def do_compute_gt(xb, xq, k):
print "computing GT"
nb, d = xb.shape
index = faiss.index_cpu_to_all_gpus(faiss.IndexFlatL2(d))
if nb < 100 * 1000:
print " add"
index.add(np.ascontiguousarray(xb, dtype='float32'))
print " search"
D, I = index.search(np.ascontiguousarray(xq, dtype='float32'), k)
else:
I = compute_GT_sliced(xb, xq, k)
return I.astype('int32')
def load_data(dataset='deep1M', compute_gt=False):
print "load data", dataset
if dataset == 'sift1M':
basedir = simdir + 'sift1M/'
xt = fvecs_read(basedir + "sift_learn.fvecs")
xb = fvecs_read(basedir + "sift_base.fvecs")
xq = fvecs_read(basedir + "sift_query.fvecs")
gt = ivecs_read(basedir + "sift_groundtruth.ivecs")
elif dataset.startswith('bigann'):
basedir = simdir + 'bigann/'
dbsize = 1000 if dataset == "bigann1B" else int(dataset[6:-1])
xb = bvecs_mmap(basedir + 'bigann_base.bvecs')
xq = bvecs_mmap(basedir + 'bigann_query.bvecs')
xt = bvecs_mmap(basedir + 'bigann_learn.bvecs')
# trim xb to correct size
xb = xb[:dbsize * 1000 * 1000]
gt = ivecs_read(basedir + 'gnd/idx_%dM.ivecs' % dbsize)
elif dataset.startswith("deep"):
basedir = simdir + 'deep1b/'
szsuf = dataset[4:]
if szsuf[-1] == 'M':
dbsize = 10 ** 6 * int(szsuf[:-1])
elif szsuf == '1B':
dbsize = 10 ** 9
elif szsuf[-1] == 'k':
dbsize = 1000 * int(szsuf[:-1])
else:
assert False, "did not recognize suffix " + szsuf
xt = fvecs_mmap(basedir + "learn.fvecs")
xb = fvecs_mmap(basedir + "base.fvecs")
xq = fvecs_read(basedir + "deep1B_queries.fvecs")
xb = xb[:dbsize]
gt_fname = basedir + "%s_groundtruth.ivecs" % dataset
if compute_gt:
gt = do_compute_gt(xb, xq, 100)
print "store", gt_fname
ivecs_write(gt_fname, gt)
gt = ivecs_read(gt_fname)
else:
assert False
print "dataset %s sizes: B %s Q %s T %s" % (
dataset, xb.shape, xq.shape, xt.shape)
return xt, xb, xq, gt
#################################################################
# Evaluation
#################################################################
def evaluate_DI(D, I, gt):
nq = gt.shape[0]
k = I.shape[1]
rank = 1
while rank <= k:
recall = (I[:, :rank] == gt[:, :1]).sum() / float(nq)
print "R@%d: %.4f" % (rank, recall),
rank *= 10
def evaluate(xq, gt, index, k=100, endl=True):
t0 = time.time()
D, I = index.search(xq, k)
t1 = time.time()
nq = xq.shape[0]
print "\t %8.4f ms per query, " % (
(t1 - t0) * 1000.0 / nq),
rank = 1
while rank <= k:
recall = (I[:, :rank] == gt[:, :1]).sum() / float(nq)
print "R@%d: %.4f" % (rank, recall),
rank *= 10
if endl:
print
return D, I