diff --git a/docs/methods.md b/docs/methods.md index 3d6fa51..5f82c60 100644 --- a/docs/methods.md +++ b/docs/methods.md @@ -26,6 +26,18 @@ intensity images. The default method. +To use an NVIDIA CUDA GPU-accelerated version, install the +`itkwasm-downsample-cucim` package: + +[Install cuCIM](https://github.com/rapidsai/cucim?tab=readme-ov-file#install-cucim), +then: + +```sh +pip install itkwasm-downsample-cucim +``` + +And GPU-accelerated filtering is applied by default after installation. + ## `ITKWASM_BIN_SHRINK` Uses the [local mean] for the output value. [WebAssembly] build. @@ -34,6 +46,9 @@ Fast but generates more artifacts than gaussian-based methods. Appropriate for intensity images. +An NVIDIA CUDA GPU-accelerated version can be installed similar to +`ITKWASM_GAUSSIAN` above. + ## `ITKWASM_LABEL_IMAGE` A sample is the mode of the linearly weighted [local labels] in the image. @@ -56,7 +71,8 @@ To use a GPU-accelerated version, install the `itk-vkfft` package: pip install itk-vkfft ``` -And GPU-accelerated, FFT-based filtering is applied by default after installation. +And GPU-accelerated, FFT-based filtering is applied by default after +installation. ## `ITK_BIN_SHRINK` @@ -105,7 +121,6 @@ Install required dependencies with: pip install "ngff-zarr[dask-image]" ``` - [aliasing artifacts]: https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem [dask-image]: https://image.dask.org/ diff --git a/ngff_zarr/methods/_itkwasm.py b/ngff_zarr/methods/_itkwasm.py index 7e1b433..a06343c 100644 --- a/ngff_zarr/methods/_itkwasm.py +++ b/ngff_zarr/methods/_itkwasm.py @@ -102,7 +102,7 @@ def _downsample_itkwasm_bin_shrink( origin = [previous_image.translation[d] for d in spatial_dims] block_input.origin = origin block_output = downsample_bin_shrink( - block_input, shrink_factors, information_only=False + block_input, shrink_factors, information_only=True ) scale = {_image_dims[i]: s for (i, s) in enumerate(block_output.spacing)} translation = {_image_dims[i]: s for (i, s) in enumerate(block_output.origin)} diff --git a/ngff_zarr/to_ngff_zarr.py b/ngff_zarr/to_ngff_zarr.py index 19a96be..f23bf89 100644 --- a/ngff_zarr/to_ngff_zarr.py +++ b/ngff_zarr/to_ngff_zarr.py @@ -1,11 +1,18 @@ +import sys from collections.abc import MutableMapping from dataclasses import asdict from pathlib import Path, PurePosixPath from typing import Optional, Union +if sys.version_info < (3, 10): + import importlib_metadata +else: + import importlib.metadata as importlib_metadata + import dask.array import numpy as np import zarr +from itkwasm import array_like_to_numpy_array from zarr.storage import BaseStore from .config import config @@ -27,6 +34,31 @@ def _pop_metadata_optionals(metadata_dict): return metadata_dict +def _prep_for_to_zarr( + store: Union[MutableMapping, str, Path, BaseStore], arr: dask.array.Array +) -> dask.array.Array: + try: + importlib_metadata.distribution("kvikio") + _KVIKIO_AVAILABLE = True + except importlib_metadata.PackageNotFoundError: + _KVIKIO_AVAILABLE = False + + if _KVIKIO_AVAILABLE: + from kvikio.zarr import GDSStore + + if not isinstance(store, GDSStore): + arr = dask.array.map_blocks( + array_like_to_numpy_array, + arr, + dtype=arr.dtype, + meta=np.empty(()), + ) + return arr + return dask.array.map_blocks( + array_like_to_numpy_array, arr, dtype=arr.dtype, meta=np.empty(()) + ) + + def to_ngff_zarr( store: Union[MutableMapping, str, Path, BaseStore], multiscales: Multiscales, @@ -221,6 +253,7 @@ def to_ngff_zarr( f"[green]Writing scale {index+1} of {nscales}, region {region_index+1} of {len(regions)}" ) arr_region = arr[region] + arr_region = _prep_for_to_zarr(store, arr_region) optimized = dask.array.Array( dask.array.optimize( arr_region.__dask_graph__(), arr_region.__dask_keys__() @@ -245,6 +278,7 @@ def to_ngff_zarr( progress.add_callback_task( f"[green]Writing scale {index+1} of {nscales}" ) + arr = _prep_for_to_zarr(store, arr) dask.array.to_zarr( arr, store, diff --git a/pyproject.toml b/pyproject.toml index 88c30c6..f66494d 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -10,9 +10,7 @@ readme = "README.md" requires-python = ">=3.8" license = "MIT" keywords = [] -authors = [ - { name = "Matt McCormick", email = "matt.mccormick@kitware.com" }, -] +authors = [{ name = "Matt McCormick", email = "matt.mccormick@kitware.com" }] classifiers = [ "Development Status :: 4 - Beta", "Intended Audience :: Science/Research", @@ -30,15 +28,15 @@ classifiers = [ "Topic :: Scientific/Engineering", ] dependencies = [ - "dask[array]", - "itkwasm >= 1.0b167", - "itkwasm-downsample >= 1.1.0", - "numpy", - "platformdirs", - "psutil; sys_platform != \"emscripten\"", - "rich", - "typing_extensions", - "zarr", + "dask[array]", + "itkwasm >= 1.0b168", + "itkwasm-downsample >= 1.1.0", + "numpy", + "platformdirs", + "psutil; sys_platform != \"emscripten\"", + "rich", + "typing_extensions", + "zarr", ] dynamic = ["version"] @@ -55,32 +53,27 @@ ngff-zarr = "ngff_zarr.cli:main" path = "ngff_zarr/__about__.py" [project.optional-dependencies] -dask-image = [ - "dask-image", -] -itk = [ - "itk-filtering>=5.3.0", -] +dask-image = ["dask-image"] +itk = ["itk-filtering>=5.3.0"] cli = [ - "dask-image", - "dask[distributed]", - "itk-filtering>=5.3.0", - "itk-io>=5.3.0", - "itkwasm-image-io", - "imageio", - "tifffile", - "imagecodecs", + "dask-image", + "dask[distributed]", + "itk-filtering>=5.3.0", + "itk-io>=5.3.0", + "itkwasm-image-io", + "imageio", + "tifffile", + "imagecodecs", ] test = [ - "pytest >=6", - "pre-commit", - "pooch", - "itkwasm", - "itk-io>=5.3.0", - "itkwasm-image-io", - "itk-filtering>=5.3.0", - "tifffile", - "jsonschema", + "pytest >=6", + "pre-commit", + "pooch", + "itk-io>=5.3.0", + "itkwasm-image-io", + "itk-filtering>=5.3.0", + "tifffile", + "jsonschema", ] @@ -100,40 +93,40 @@ filterwarnings = [ "ignore:(ast.Str|Attribute s|ast.NameConstant|ast.Num) is deprecated:DeprecationWarning:_pytest", ] log_cli_level = "INFO" -testpaths = [ - "tests", -] +testpaths = ["tests"] [tool.ruff] select = [ - "E", "F", "W", # flake8 - "B", # flake8-bugbear - "I", # isort - "ARG", # flake8-unused-arguments - "C4", # flake8-comprehensions - "EM", # flake8-errmsg - "ICN", # flake8-import-conventions - "ISC", # flake8-implicit-str-concat - "G", # flake8-logging-format - "PGH", # pygrep-hooks - "PIE", # flake8-pie - "PL", # pylint - "PT", # flake8-pytest-style - "PTH", # flake8-use-pathlib - "RET", # flake8-return - "RUF", # Ruff-specific - "SIM", # flake8-simplify - "T20", # flake8-print - "UP", # pyupgrade - "YTT", # flake8-2020 - "EXE", # flake8-executable - "NPY", # NumPy specific rules - "PD", # pandas-vet + "E", + "F", + "W", # flake8 + "B", # flake8-bugbear + "I", # isort + "ARG", # flake8-unused-arguments + "C4", # flake8-comprehensions + "EM", # flake8-errmsg + "ICN", # flake8-import-conventions + "ISC", # flake8-implicit-str-concat + "G", # flake8-logging-format + "PGH", # pygrep-hooks + "PIE", # flake8-pie + "PL", # pylint + "PT", # flake8-pytest-style + "PTH", # flake8-use-pathlib + "RET", # flake8-return + "RUF", # Ruff-specific + "SIM", # flake8-simplify + "T20", # flake8-print + "UP", # pyupgrade + "YTT", # flake8-2020 + "EXE", # flake8-executable + "NPY", # NumPy specific rules + "PD", # pandas-vet ] extend-ignore = [ - "PLR", # Design related pylint codes - "E501", # Line too long + "PLR", # Design related pylint codes + "E501", # Line too long ] src = ["src"] unfixable = [ @@ -150,7 +143,7 @@ line-length = 88 [tool.pylint] py-version = "3.8" -ignore-paths= ["src/ngff_zarr/__about__.py"] +ignore-paths = ["src/ngff_zarr/__about__.py"] reports.output-format = "colorized" similarities.ignore-imports = "yes" messages_control.disable = [ diff --git a/test/_data.py b/test/_data.py index c063e3d..ef0dc5e 100644 --- a/test/_data.py +++ b/test/_data.py @@ -7,8 +7,8 @@ from ngff_zarr import itk_image_to_ngff_image, to_ngff_zarr from zarr.storage import DirectoryStore, MemoryStore -test_data_ipfs_cid = "bafybeiawyalfemcmlfbizetoqilpmbk6coowu7cqr7av6aff4dpjwlsk6m" -test_data_sha256 = "3f32e9e8fac84de3fbe63d0a6142b2eb65cadd8c9e1c3ba7f93080a6bc2150ef" +test_data_ipfs_cid = "bafybeiaskr5fxg6rbcwlxl6ibzqhubdleacenrpbnymc6oblwoi7ceqzta" +test_data_sha256 = "95e1f3864267dd9e0bd9ba7c99515d5952ca721b9dbbf282271e696fdab48f65" test_dir = Path(__file__).resolve().parent extract_dir = "data" @@ -21,7 +21,8 @@ def input_images(): pooch.retrieve( fname="data.tar.gz", path=test_dir, - url=f"https://{test_data_ipfs_cid}.ipfs.w3s.link/ipfs/{test_data_ipfs_cid}/data.tar.gz", + url=f"https://itk.mypinata.cloud/ipfs/{test_data_ipfs_cid}/data.tar.gz", + # url=f"https://{test_data_ipfs_cid}.ipfs.w3s.link/ipfs/{test_data_ipfs_cid}/data.tar.gz", known_hash=f"sha256:{test_data_sha256}", processor=untar, ) diff --git a/test/test_to_ngff_zarr_itkwasm.py b/test/test_to_ngff_zarr_itkwasm.py index 3ca2d5d..bc32238 100644 --- a/test/test_to_ngff_zarr_itkwasm.py +++ b/test/test_to_ngff_zarr_itkwasm.py @@ -2,15 +2,29 @@ from ._data import verify_against_baseline +_HAVE_CUCIM = False +try: + import itkwasm_downsample_cucim # noqa: F401 + + _HAVE_CUCIM = True +except ImportError: + pass + def test_bin_shrink_isotropic_scale_factors(input_images): dataset_name = "cthead1" image = input_images[dataset_name] - baseline_name = "2_4/ITKWASM_BIN_SHRINK.zarr" + if _HAVE_CUCIM: + baseline_name = "2_4/ITKWASM_BIN_SHRINK_CUCIM.zarr" + else: + baseline_name = "2_4/ITKWASM_BIN_SHRINK.zarr" multiscales = to_multiscales(image, [2, 4], method=Methods.ITKWASM_BIN_SHRINK) verify_against_baseline(dataset_name, baseline_name, multiscales) - baseline_name = "auto/ITKWASM_BIN_SHRINK.zarr" + if _HAVE_CUCIM: + baseline_name = "auto/ITKWASM_BIN_SHRINK_CUCIM.zarr" + else: + baseline_name = "auto/ITKWASM_BIN_SHRINK.zarr" multiscales = to_multiscales(image, method=Methods.ITKWASM_BIN_SHRINK) verify_against_baseline(dataset_name, baseline_name, multiscales) @@ -18,23 +32,35 @@ def test_bin_shrink_isotropic_scale_factors(input_images): def test_gaussian_isotropic_scale_factors(input_images): dataset_name = "cthead1" image = input_images[dataset_name] - baseline_name = "2_4/ITKWASM_GAUSSIAN.zarr" + if _HAVE_CUCIM: + baseline_name = "2_4/ITKWASM_GAUSSIAN_CUCIM.zarr" + else: + baseline_name = "2_4/ITKWASM_GAUSSIAN.zarr" multiscales = to_multiscales(image, [2, 4], method=Methods.ITKWASM_GAUSSIAN) verify_against_baseline(dataset_name, baseline_name, multiscales) - baseline_name = "auto/ITKWASM_GAUSSIAN.zarr" + if _HAVE_CUCIM: + baseline_name = "auto/ITKWASM_GAUSSIAN_CUCIM.zarr" + else: + baseline_name = "auto/ITKWASM_GAUSSIAN.zarr" multiscales = to_multiscales(image, method=Methods.ITKWASM_GAUSSIAN) verify_against_baseline(dataset_name, baseline_name, multiscales) dataset_name = "cthead1" image = input_images[dataset_name] - baseline_name = "2_3/ITKWASM_GAUSSIAN.zarr" + if _HAVE_CUCIM: + baseline_name = "2_3/ITKWASM_GAUSSIAN_CUCIM.zarr" + else: + baseline_name = "2_3/ITKWASM_GAUSSIAN.zarr" multiscales = to_multiscales(image, [2, 3], method=Methods.ITKWASM_GAUSSIAN) verify_against_baseline(dataset_name, baseline_name, multiscales) dataset_name = "MR-head" image = input_images[dataset_name] - baseline_name = "2_3_4/ITKWASM_GAUSSIAN.zarr" + if _HAVE_CUCIM: + baseline_name = "2_3_4/ITKWASM_GAUSSIAN_CUCIM.zarr" + else: + baseline_name = "2_3_4/ITKWASM_GAUSSIAN.zarr" multiscales = to_multiscales(image, [2, 3, 4], method=Methods.ITKWASM_GAUSSIAN) verify_against_baseline(dataset_name, baseline_name, multiscales) diff --git a/test/test_to_ngff_zarr_kvikio.py b/test/test_to_ngff_zarr_kvikio.py new file mode 100644 index 0000000..bbdae19 --- /dev/null +++ b/test/test_to_ngff_zarr_kvikio.py @@ -0,0 +1,35 @@ +import pytest +from ngff_zarr import Methods, to_multiscales, to_ngff_zarr + +pytest.importorskip("kvikio") +pytest.importorskip("itkwasm_downsample_cucim") + + +def test_bin_shrink_isotropic_scale_factors(input_images, tmp_path): + dataset_name = "cthead1" + image = input_images[dataset_name] + baseline_name = "2_4/ITKWASM_BIN_SHRINK.zarr" + multiscales = to_multiscales(image, [2, 4], method=Methods.ITKWASM_BIN_SHRINK) + + from kvikio.zarr import GDSStore + + store = GDSStore(tmp_path / baseline_name, dimension_separator="/") + from kvikio.nvcomp_codec import NvCompBatchCodec + + compressor = NvCompBatchCodec("lz4") + to_ngff_zarr(store, multiscales, compressor=compressor) + + +def test_gaussian_isotropic_scale_factors(input_images, tmp_path): + dataset_name = "cthead1" + image = input_images[dataset_name] + baseline_name = "2_4/ITKWASM_GAUSSIAN.zarr" + multiscales = to_multiscales(image, [2, 4], method=Methods.ITKWASM_GAUSSIAN) + + from kvikio.zarr import GDSStore + + store = GDSStore(tmp_path / baseline_name, dimension_separator="/") + from kvikio.nvcomp_codec import NvCompBatchCodec + + compressor = NvCompBatchCodec("zstd") + to_ngff_zarr(store, multiscales, compressor=compressor)