Skip to content

Latest commit

 

History

History
55 lines (40 loc) · 2.36 KB

README.md

File metadata and controls

55 lines (40 loc) · 2.36 KB

A Simple Python Implemention of the UCERF3 workflow

See: Weldon RJ, Biasi GP. Appendix I: Probability of detection of ground rupture at paleoseismic sites. US Geol. Surv. Open‐File Rept. 2013‐1165‐I, and California Geol. Surv. Special Rept. 228‐I. 2013.

Usage

from detectpaleo import dpaleo

Examples and analysis

See the Jupyter notebooks

  • workflow_general.ipynb : A general setup for detectability of ground rupture at paleoseismic sites
  • workflow_informalUCERF3.ipynb : An informal implementation of UCERf3 models
  • workout_gev_surfslipdist.ipynb : An analysis for Generalized Extreme Value Distribution Model for Surface Slip Distribution

Key Functions

Note: The units used here are: slip in metres,and magntude Mw

Probability of Surface Rupture
  • prob_detectsurfrup(magnitude=-1, model="UCERf3", doplot = False) returns probability
  • plot_prob_detectsurfrup(model="UCERF3")
    • Model can be also a name of a file (along with it's relative or absolute location).
    • File should contain list of comma separated values: magnitude, probability
Average Surface Slip
  • mag2avg_surfslip(magnitude=-1, model="UCERF3")
    • Alternately, model = NZNSHM2022 (derived from simplied mag-area scaling, dominant strike-slip faulting) or TMG2017 (pending implementation)
    • returns average surface slip
  • plot_mag2avg_surfslip(model="UCERF3")
Slip Profile
  • slip_profile(avg_surfslip, x_by_RL=np.linspace(0.05, 0.5,50), model='sinesqrt')
    • returns slip values at locations x_by_R, based on a sinesqrt functionL. The location is that normalized by rupture length
  • sinesqrt(x)
    • returns slip values at locations x_by_RL, based on a sinesqrt function. The location is that normalized by rupture length
  • plot_sinesqrt()
Detectability of Paleo-Slip
  • prob_detectpaleoslip(sampledslip, prob_sampledslip = 1, model="wrightwood2013", slipfactor=1)
    • slipfactor (typically, <=1.0) is to enable modulations on detectability of slip
    • returns probability
  • plot_prob_detect_paleoslip(model="wrightwood2013")
Slip PDF at a Point of the Fault
  • prob_slip_profpoint (slip_x, xi=-1, model = "UCERF3", normalized = False)

    • Alternately, model = "GEV"
    • return sampledslip, slipprob
  • surfslipdist_gev(fRL)

    • returns the GEV parameters (shape, location, scale) for a given location fRL on rupture profile