-
Notifications
You must be signed in to change notification settings - Fork 159
/
Copy pathvixtts_demo.py
411 lines (342 loc) · 12.5 KB
/
vixtts_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# This demo is adopted from https://github.com/coqui-ai/TTS/blob/dev/TTS/demos/xtts_ft_demo/xtts_demo.py
# With some modifications to fit the viXTTS model
import argparse
import hashlib
import logging
import os
import string
import subprocess
import sys
import tempfile
from datetime import datetime
import gradio as gr
import soundfile as sf
import torch
import torchaudio
from huggingface_hub import hf_hub_download, snapshot_download
from underthesea import sent_tokenize
from unidecode import unidecode
from vinorm import TTSnorm
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
XTTS_MODEL = None
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
MODEL_DIR = os.path.join(SCRIPT_DIR, "model")
OUTPUT_DIR = os.path.join(SCRIPT_DIR, "output")
FILTER_SUFFIX = "_DeepFilterNet3.wav"
os.makedirs(OUTPUT_DIR, exist_ok=True)
def clear_gpu_cache():
if torch.cuda.is_available():
torch.cuda.empty_cache()
def load_model(checkpoint_dir="model/", repo_id="capleaf/viXTTS", use_deepspeed=False):
global XTTS_MODEL
clear_gpu_cache()
os.makedirs(checkpoint_dir, exist_ok=True)
required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
files_in_dir = os.listdir(checkpoint_dir)
if not all(file in files_in_dir for file in required_files):
yield f"Missing model files! Downloading from {repo_id}..."
snapshot_download(
repo_id=repo_id,
repo_type="model",
local_dir=checkpoint_dir,
)
hf_hub_download(
repo_id="coqui/XTTS-v2",
filename="speakers_xtts.pth",
local_dir=checkpoint_dir,
)
yield f"Model download finished..."
xtts_config = os.path.join(checkpoint_dir, "config.json")
config = XttsConfig()
config.load_json(xtts_config)
XTTS_MODEL = Xtts.init_from_config(config)
yield "Loading model..."
XTTS_MODEL.load_checkpoint(
config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
)
if torch.cuda.is_available():
XTTS_MODEL.cuda()
print("Model Loaded!")
yield "Model Loaded!"
# Define dictionaries to store cached results
cache_queue = []
speaker_audio_cache = {}
filter_cache = {}
conditioning_latents_cache = {}
def invalidate_cache(cache_limit=50):
"""Invalidate the cache for the oldest key"""
if len(cache_queue) > cache_limit:
key_to_remove = cache_queue.pop(0)
print("Invalidating cache", key_to_remove)
if os.path.exists(key_to_remove):
os.remove(key_to_remove)
if os.path.exists(key_to_remove.replace(".wav", "_DeepFilterNet3.wav")):
os.remove(key_to_remove.replace(".wav", "_DeepFilterNet3.wav"))
if key_to_remove in filter_cache:
del filter_cache[key_to_remove]
if key_to_remove in conditioning_latents_cache:
del conditioning_latents_cache[key_to_remove]
def generate_hash(data):
hash_object = hashlib.md5()
hash_object.update(data)
return hash_object.hexdigest()
def get_file_name(text, max_char=50):
filename = text[:max_char]
filename = filename.lower()
filename = filename.replace(" ", "_")
filename = filename.translate(
str.maketrans("", "", string.punctuation.replace("_", ""))
)
filename = unidecode(filename)
current_datetime = datetime.now().strftime("%m%d%H%M%S")
filename = f"{current_datetime}_{filename}"
return filename
def normalize_vietnamese_text(text):
text = (
TTSnorm(text, unknown=False, lower=False, rule=True)
.replace("..", ".")
.replace("!.", "!")
.replace("?.", "?")
.replace(" .", ".")
.replace(" ,", ",")
.replace('"', "")
.replace("'", "")
.replace("AI", "Ây Ai")
.replace("A.I", "Ây Ai")
)
return text
def calculate_keep_len(text, lang):
"""Simple hack for short sentences"""
if lang in ["ja", "zh-cn"]:
return -1
word_count = len(text.split())
num_punct = text.count(".") + text.count("!") + text.count("?") + text.count(",")
if word_count < 5:
return 15000 * word_count + 2000 * num_punct
elif word_count < 10:
return 13000 * word_count + 2000 * num_punct
return -1
def run_tts(lang, tts_text, speaker_audio_file, use_deepfilter, normalize_text):
global filter_cache, conditioning_latents_cache, cache_queue
if XTTS_MODEL is None:
return "You need to run the previous step to load the model !!", None, None
if not speaker_audio_file:
return "You need to provide reference audio!!!", None, None
# Use the file name as the key, since it's suppose to be unique 💀
speaker_audio_key = speaker_audio_file
if not speaker_audio_key in cache_queue:
cache_queue.append(speaker_audio_key)
invalidate_cache()
# Check if filtered reference is cached
if use_deepfilter and speaker_audio_key in filter_cache:
print("Using filter cache...")
speaker_audio_file = filter_cache[speaker_audio_key]
elif use_deepfilter:
print("Running filter...")
subprocess.run(
[
"deepFilter",
speaker_audio_file,
"-o",
os.path.dirname(speaker_audio_file),
]
)
filter_cache[speaker_audio_key] = speaker_audio_file.replace(
".wav", FILTER_SUFFIX
)
speaker_audio_file = filter_cache[speaker_audio_key]
# Check if conditioning latents are cached
cache_key = (
speaker_audio_key,
XTTS_MODEL.config.gpt_cond_len,
XTTS_MODEL.config.max_ref_len,
XTTS_MODEL.config.sound_norm_refs,
)
if cache_key in conditioning_latents_cache:
print("Using conditioning latents cache...")
gpt_cond_latent, speaker_embedding = conditioning_latents_cache[cache_key]
else:
print("Computing conditioning latents...")
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(
audio_path=speaker_audio_file,
gpt_cond_len=XTTS_MODEL.config.gpt_cond_len,
max_ref_length=XTTS_MODEL.config.max_ref_len,
sound_norm_refs=XTTS_MODEL.config.sound_norm_refs,
)
conditioning_latents_cache[cache_key] = (gpt_cond_latent, speaker_embedding)
if normalize_text and lang == "vi":
tts_text = normalize_vietnamese_text(tts_text)
# Split text by sentence
if lang in ["ja", "zh-cn"]:
sentences = tts_text.split("。")
else:
sentences = sent_tokenize(tts_text)
from pprint import pprint
pprint(sentences)
wav_chunks = []
for sentence in sentences:
if sentence.strip() == "":
continue
wav_chunk = XTTS_MODEL.inference(
text=sentence,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
# The following values are carefully chosen for viXTTS
temperature=0.3,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=30,
top_p=0.85,
enable_text_splitting=True,
)
keep_len = calculate_keep_len(sentence, lang)
wav_chunk["wav"] = wav_chunk["wav"][:keep_len]
wav_chunks.append(torch.tensor(wav_chunk["wav"]))
out_wav = torch.cat(wav_chunks, dim=0).unsqueeze(0)
gr_audio_id = os.path.basename(os.path.dirname(speaker_audio_file))
out_path = os.path.join(OUTPUT_DIR, f"{get_file_name(tts_text)}_{gr_audio_id}.wav")
print("Saving output to ", out_path)
torchaudio.save(out_path, out_wav, 24000)
return "Speech generated !", out_path
# Define a logger to redirect
class Logger:
def __init__(self, filename="log.out"):
self.log_file = filename
self.terminal = sys.stdout
self.log = open(self.log_file, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
# Redirect stdout and stderr to a file
sys.stdout = Logger()
sys.stderr = sys.stdout
logging.basicConfig(
level=logging.ERROR,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[logging.StreamHandler(sys.stdout)],
)
def read_logs():
sys.stdout.flush()
with open(sys.stdout.log_file, "r") as f:
return f.read()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="""viXTTS inference demo\n\n""",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--port",
type=int,
help="Port to run the gradio demo. Default: 5003",
default=5003,
)
parser.add_argument(
"--model_dir",
type=str,
help="Path to the checkpoint directory. This directory must contain 04 files: model.pth, config.json, vocab.json and speakers_xtts.pth",
default=None,
)
parser.add_argument(
"--reference_audio",
type=str,
help="Path to the reference audio file.",
default=None,
)
args = parser.parse_args()
if args.model_dir:
MODEL_DIR = os.path.abspath(args.model_dir)
REFERENCE_AUDIO = os.path.join(SCRIPT_DIR, "assets", "vixtts_sample_female.wav")
if args.reference_audio:
REFERENCE_AUDIO = os.abspath(args.reference_audio)
with gr.Blocks() as demo:
intro = """
# viXTTS Inference Demo
Visit viXTTS on HuggingFace: [viXTTS](https://huggingface.co/capleaf/viXTTS)
"""
gr.Markdown(intro)
with gr.Row():
with gr.Column() as col1:
repo_id = gr.Textbox(
label="HuggingFace Repo ID",
value="capleaf/viXTTS",
)
checkpoint_dir = gr.Textbox(
label="viXTTS model directory",
value=MODEL_DIR,
)
use_deepspeed = gr.Checkbox(
value=True, label="Use DeepSpeed for faster inference"
)
progress_load = gr.Label(label="Progress:")
load_btn = gr.Button(
value="Step 1 - Load viXTTS model", variant="primary"
)
with gr.Column() as col2:
speaker_reference_audio = gr.Audio(
label="Speaker reference audio:",
value=REFERENCE_AUDIO,
type="filepath",
)
tts_language = gr.Dropdown(
label="Language",
value="vi",
choices=[
"vi",
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh",
"hu",
"ko",
"ja",
],
)
use_filter = gr.Checkbox(
label="Denoise Reference Audio",
value=True,
)
normalize_text = gr.Checkbox(
label="Normalize Input Text",
value=True,
)
tts_text = gr.Textbox(
label="Input Text.",
value="Xin chào, tôi là một công cụ chuyển đổi văn bản thành giọng nói tiếng Việt được phát triển bởi nhóm Nón lá.",
)
tts_btn = gr.Button(value="Step 2 - Inference", variant="primary")
with gr.Column() as col3:
progress_gen = gr.Label(label="Progress:")
tts_output_audio = gr.Audio(label="Generated Audio.")
load_btn.click(
fn=load_model,
inputs=[checkpoint_dir, repo_id, use_deepspeed],
outputs=[progress_load],
)
tts_btn.click(
fn=run_tts,
inputs=[
tts_language,
tts_text,
speaker_reference_audio,
use_filter,
normalize_text,
],
outputs=[progress_gen, tts_output_audio],
)
demo.launch(share=True, debug=False, server_port=args.port, server_name="0.0.0.0")