-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_utils.py
118 lines (100 loc) · 3.03 KB
/
plot_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import matplotlib.pyplot as plt
import re
import torch
import numpy as np
import copy
#F1-Score on valset : 0.8001
#F1-Score on trainset: 0.8525
def parameters(model):
num_params = 0
for params in model.parameters():
curn = 1
for size in params.data.shape:
curn *= size
num_params += curn
return num_params
def custom_print(epoch, ce_loss, add_loss, d_loss, true_acc, fake_acc):
print(f"Epoch {epoch:05d} | ce_loss: {ce_loss:.4f} | add_loss: {add_loss:.4f} | d_model_loss: {d_loss:.4f} | true_acc: {true_acc:.4f} | fake_acc: {fake_acc:.4f}")
class statistics_feature():
"""
get the statistics of the feature
"""
def __init__(self):
self.feat = None
def _min(self):
self.min = np.min(self.feat)
def _max(self):
self.max = np.max(self.feat)
def _hist(self, _min, _max):
hist, _ = np.histogram(self.feat, bins=100, range=(_min, _max))
self.hist = hist
def add(self, feat):
feat = copy.deepcopy(feat)
if isinstance(feat, torch.Tensor):
feat = feat.detach().cpu().numpy()
self.feat = feat
def plot(self, saveto=None):
self._max()
self._min()
self._hist(_min=-1, _max=1)
plt.plot(self.hist)
if saveto is None:
print("min and max: ", self.min, self.max)
plt.show()
class loss_logger():
"""class for logging the loss
"""
def __init__(self):
self.lossdict = {}
self.x = 1
def add(self, name, score, x=None):
if x is None:
x = self.x; self.x+=1
if name in self.lossdict:
self.lossdict[name] += [(x,score)]
else:
self.lossdict[name] = [(x,score)]
def plot(self, names=None, saveto=None):
if names is None:
names = self.lossdict.keys()
for name in names:
x = [data[0] for data in self.lossdict[name]]
y = [data[1] for data in self.lossdict[name]]
plt.plot(x, y)
plt.legend(names)
if saveto is not None:
plt.savefig(saveto)
else:
plt.show()
plt.close()
def read_log(filepath):
train = []
val = []
with open(filepath, 'r') as f:
lines = f.readlines()
for line in lines:
info = re.findall(r'\d+',line)
if len(info)==3:
value = float(info[2])*1e-4
if "train" in line:
train.append(value)
elif "val" in line:
val.append(value)
plt.plot(train)
plt.plot(val)
if __name__ == '__main__':
"""
filepath = "logs/mi_train23.txt"
read_log(filepath)
filepath = "logs/teacher_train4_3layers.txt"
read_log(filepath)
plt.legend(['mi_train','mi_val', 'teacher_train', 'teacher_val'])
plt.show()
"""
losslogger = loss_logger()
losslogger.add('g', 3)
losslogger.add('g', 4)
losslogger.add('g', 5)
losslogger.add('g', 6)
losslogger.add('g', 3)
losslogger.plot()