-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
202 lines (180 loc) · 7.12 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
## contains supporting functions
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.nn as nn
from sklearn.metrics import f1_score
import dgl
from dgl.data.ppi import LegacyPPIDataset as PPIDataset
# from dgl.data import PPIDataset
from gat import GAT, GCN
# generic func to evalate model, return score & loss
def evaluate(feats, model, subgraph, labels, loss_fcn):
model.eval() # turn on evaluation mode
with torch.no_grad():
model.g = subgraph
for layer in model.gat_layers:
layer.g = subgraph
output = model(feats.float())
loss_data = loss_fcn(output, labels.float())
predict = np.where(output.data.cpu().numpy() >= 0.5, 1, 0)
score = f1_score(labels.data.cpu().numpy(),
predict, average='micro')
model.train() # turn on train mode
return score, loss_data.item()
# evaluate a model on specific test set
def test_model(test_dataloader, model, device, loss_fcn):
test_score_list = []
model.eval()
with torch.no_grad():
for batch, test_data in enumerate(test_dataloader):
subgraph, feats, labels = test_data
subgraph = subgraph.to(device)
feats = feats.to(device) # device (maybe gpu) will load inputs
labels = labels.to(device)
test_score_list.append(evaluate(feats, model, subgraph, labels.float(), loss_fcn)[0])
mean_score = np.array(test_score_list).mean()
print(f"F1-Score on testset: {mean_score:.4f}")
model.train()
return mean_score
# get prediction
def generate_label(t_model, subgraph, feats, device):
'''generate pseudo lables given a teacher model
'''
# t_model.to(device)
t_model.eval()
with torch.no_grad():
t_model.g = subgraph
for layer in t_model.gat_layers:
layer.g = subgraph
# soft labels
logits_t = t_model(feats.float())
#pseudo_labels = torch.where(t_logits>0.5,
# torch.ones(t_logits.shape).to(device),
# torch.zeros(t_logits.shape).to(device))
#labels = logits_t
return logits_t.detach()
# evaluate model based on train & valid test
def evaluate_model(valid_dataloader, train_dataloader, device, s_model, loss_fcn):
score_list = []
val_loss_list = []
s_model.eval()
with torch.no_grad():
for batch, valid_data in enumerate(valid_dataloader):
subgraph, feats, labels = valid_data
subgraph = subgraph.to(device)
feats = feats.to(device)
labels = labels.to(device)
score, val_loss = evaluate(feats.float(), s_model, subgraph, labels.float(), loss_fcn)
score_list.append(score)
val_loss_list.append(val_loss)
mean_score = np.array(score_list).mean()
mean_val_loss = np.array(val_loss_list).mean()
print(f"F1-Score on valset : {mean_score:.4f} ")
s_model.train()
return mean_score
"""
train_score_list = []
for batch, train_data in enumerate(train_dataloader):
subgraph, feats, labels = train_data
feats = feats.to(device)
labels = labels.to(device)
train_score_list.append(evaluate(feats, s_model, subgraph, labels.float(), loss_fcn)[0])
print(f"F1-Score on trainset: {np.array(train_score_list).mean():.4f}")
"""
def collate(sample):
# print('type of sample: ', type(sample))
# print("len of sample: ", len(sample))
graphs, feats, labels =map(list, zip(*sample))
graph = dgl.batch(graphs)
feats = torch.from_numpy(np.concatenate(feats))
labels = torch.from_numpy(np.concatenate(labels))
return graph, feats, labels
def collate_w_gk(sample):
'''
collate with graph_khop
'''
graphs, feats, labels, graphs_gk =map(list, zip(*sample))
graph = dgl.batch(graphs)
graph_gk = dgl.batch(graphs_gk)
feats = torch.from_numpy(np.concatenate(feats))
labels = torch.from_numpy(np.concatenate(labels))
return graph, feats, labels, graph_gk
def get_teacher(args, data_info):
'''args holds the common arguments
data_info holds some special arugments
'''
heads = ([args.t_num_heads] * args.t_num_layers) + [args.t_num_out_heads]
model = GAT(data_info['g'],
args.t_num_layers,
data_info['num_feats'],
args.t_num_hidden,
data_info['n_classes'],
heads,
F.elu,
args.in_drop,
args.attn_drop,
args.alpha,
args.residual)
return model
def get_student(args, data_info):
'''args holds the common arguments
data_info holds some special arugments
'''
heads = ([args.s_num_heads] * args.s_num_layers) + [args.s_num_out_heads]
model = GAT(data_info['g'],
args.s_num_layers,
data_info['num_feats'],
args.s_num_hidden,
data_info['n_classes'],
heads,
F.elu,
args.in_drop,
args.attn_drop,
args.alpha,
args.residual)
return model
def get_feat_info(args):
feat_info = {}
feat_info['s_feat'] = [args.s_num_heads*args.s_num_hidden] * args.s_num_layers
feat_info['t_feat'] = [args.t_num_heads*args.t_num_hidden] * args.t_num_layers
#assert len(feat_info['s_feat']) == len(feat_info['t_feat']),"number of hidden layer for teacher and student are not equal"
return feat_info
def get_data_loader(args):
'''create the dataset
return
three dataloaders and data_info
'''
train_dataset = PPIDataset(mode='train')
# print('len of an element in train_dataset', len(train_dataset[15]))
valid_dataset = PPIDataset(mode='valid')
# print('len of an element in valid_dataset', len(valid_dataset[1]))
test_dataset = PPIDataset(mode='test')
# print('len of an element in test_dataset', len(test_dataset[1]))
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, collate_fn=collate, num_workers=4, shuffle=True)
fixed_train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, collate_fn=collate, num_workers=4)
valid_dataloader = DataLoader(valid_dataset, batch_size=args.batch_size, collate_fn=collate, num_workers=2)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, collate_fn=collate, num_workers=2)
n_classes = train_dataset.labels.shape[1]
num_feats = train_dataset.features.shape[1]
g = train_dataset.graph
data_info = {}
data_info['n_classes'] = n_classes
data_info['num_feats'] = num_feats
data_info['g'] = g
return (train_dataloader, valid_dataloader, test_dataloader, fixed_train_dataloader), data_info
def save_checkpoint(model, path):
'''Saves model
'''
dirname = os.path.dirname(path)
if not os.path.isdir(dirname):
os.makedirs(dirname)
torch.save(model.state_dict(), path)
print(f"save model to {path}")
def load_checkpoint(model, path, device):
'''load model
'''
model.load_state_dict(torch.load(path, map_location=device))
print(f"Load model from {path}")