-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.Rmd
92 lines (71 loc) · 2.71 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# CitationMetricsData <img src="hexsticker/logo.png" align="right" height="180"/>
<!-- badges: start -->
<!-- badges: end -->
The goal of CitationMetricsData is to provide easy access to career-long and single-year citation data for top-cited scientists, based on the dataset 'August 2024 data-update for "Updated science-wide author databases of standardized citation indicators"' by Ioannidis, John P.A
## Installation
You can install the development version of CitationMetricsData from [GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("thiyangt/CitationMetricsData")
```
```{r}
library(CitationMetricsData)
```
## Career-long data are updated to end-of-2023
```{r}
head(career.long.data)
```
## Single recent year data pertain to citations received during calendar year 2023
```{r}
head(single.year.data)
```
# Data Visualisations
```{r, warning=FALSE, message=FALSE, echo=FALSE}
library(tidyverse)
library(countrycode)
career.long.data$country.name <- countrycode(career.long.data$cntry, origin = 'iso3c', destination = 'country.name')
top_20_cntry <- career.long.data %>%
count(country.name) %>%
arrange(desc(n)) %>%
head(20)
# Plot the bar chart
ggplot(top_20_cntry, aes(x = reorder(country.name, n), y = n)) +
geom_bar(stat = "identity", fill = "#1b9e77") +
coord_flip() + # Flip coordinates to make it horizontal
labs(title = "Top 20 Countries by Number of Top-Cited Researchers",
subtitle= "(Based on Career-long Data)",
x = "Country",
y = "Number of Researchers") +
theme_minimal()
```
```{r, echo=FALSE, warning=FALSE}
single.year.data$country.name <- countrycode(single.year.data$cntry, origin = 'iso3c', destination = 'country.name')
top_20_cntrys <- single.year.data |>
count(country.name) |>
arrange(desc(n)) |>
head(20)
# Plot the bar chart
ggplot(top_20_cntrys, aes(x = reorder(country.name, n), y = n)) +
geom_bar(stat = "identity", fill = "#d95f02") +
coord_flip() + # Flip coordinates to make it horizontal
labs(title = "Top 20 Countries by Number of Top-Cited Researchers ",
subtitle = "(Based on Single-year Data)",
x = "Country",
y = "Number of Researchers") +
theme_minimal()
```
## Data Source
Ioannidis, John P.A. (2024), “August 2024 data-update for "Updated science-wide author databases of standardized citation indicators"”, Elsevier Data Repository, V7, doi: 10.17632/btchxktzyw.7
Link: https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/7