-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopt.py
135 lines (124 loc) · 5.93 KB
/
opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import numpy as np
from copy import copy
import matplotlib.pyplot as plt
import matplotlib.animation
import matplotlib as mpl
from collections import Counter
from operator import itemgetter
from scipy import spatial
from sklearn.metrics import pairwise_distances_argmin_min
from IPython.display import HTML
mpl.rcParams['animation.embed_limit'] = 500
np.random.seed(42)
class Optimizer():
def __init__(self, problem, init_lr=0.1, init_rad_frac=0.1, it_limit=3000, neurons_per_input=3, num_frames=10, lr_decay=1, rad_decay=10, init_ring_radius=50):
self.data = problem
self.init_ring_radius = init_ring_radius
self.weights = self.init_weights(neurons_per_input)
self.it_limit = it_limit
self.num_frames = num_frames
self.plot_interval = self.it_limit // self.num_frames
self.init_lr = init_lr
self.lr_func = lambda t: self.init_lr *np.exp(-lr_decay*t/self.it_limit)
self.init_radius = self.weights.shape[0]*init_rad_frac
self.radius_func = lambda t: self.init_radius *np.exp(-rad_decay*t/self.it_limit)
self.neigh_func = lambda dist, rad: np.exp((-(dist**2)/(2*rad**2)))
def init_weights(self, neurons_per_input):
centroid = (sum(self.data[:,0])/len(self.data[:,0]), sum(self.data[:,1])/len(self.data[:,1]))
max_x = max(self.data[:,0])
max_y = max(self.data[:,1])
min_x = min(self.data[:,0])
min_y = min(self.data[:,1])
a = (max_x-centroid[0])/self.init_ring_radius
b = (max_y-centroid[1])/self.init_ring_radius
def get_point(t):
x = centroid[0]+a*np.cos(t)
y = centroid[1]+b*np.sin(t)
return (x,y)
return np.array([get_point(t) for t in np.linspace(0,2*np.pi, len(self.data)*neurons_per_input)])
def get_random(self):
ind = np.random.choice(len(self.data))
return self.data[ind]
def get_ord_dist(self, x, y):
diff = abs(x-y)
if diff < self.weights.shape[0]//2:
return diff
else:
return abs(self.weights.shape[0]-diff)
def get_dist(self, x, y):
return np.sqrt(sum([(x[i]-y[i])**2 for i in range(len(x))]))
def update_weights(self, input_vector, bmu_index, t):
for node, _ in enumerate(self.weights):
lr = self.lr_func(t)
radius = self.radius_func(t)
dist = self.get_ord_dist(bmu_index, node)
lamb = self.neigh_func(dist, radius) #np.exp((-(dist**2)/(2*radius**2)))
self.weights[node][0] = self.weights[node][0] + lamb*(input_vector[0]-self.weights[node][0])
self.weights[node][1] = self.weights[node][1] + lamb*(input_vector[1]-self.weights[node][1])
def get_winner(self, node, data):
return min([(ind, self.get_dist(node, neuron)) for ind, neuron in enumerate(data)], key=lambda x: x[1])
def calc_path_dist(self):
data_neurons = {}
for p_ind, point in enumerate(self.data):
data_neurons[p_ind] = self.get_winner(point, self.weights)[0]
order = []
for neuron_ind, _ in enumerate(self.weights):
if neuron_ind in data_neurons.values():
order.append(neuron_ind)
solution = []
sol_index = []
for p in order:
winner_ind = self.get_winner(self.weights[p], self.data)[0]
solution.append(self.data[winner_ind])
sol_index.append(winner_ind)
sol_dist = self.get_dist(solution[0], solution[-1])
for sol_ind in range(len(solution[:-1])):
sol_dist += self.get_dist(solution[sol_ind], solution[sol_ind+1])
return sol_dist, sol_index
def run(self):
'''
fig = plt.figure(figsize=(11,13), facecolor='white')
ax = fig.add_axes([0,0,1,1], frameon=False, aspect=1)
min_x = min(self.data[:,0])
max_x = max(self.data[:,0])
min_y = min(self.data[:,1])
max_y = max(self.data[:,1])
x_diff = max_x - min_x
y_diff = max_y - min_y
ax.set_xlim(min_x-x_diff*0.1, max_x+x_diff*0.1)
ax.set_ylim(min_y-y_diff*0.1, max_y+y_diff*0.1)
i = ax.scatter(self.data[:,0], self.data[:,1], marker="o", s=100, color="red", alpha=0.9)
for j, point in enumerate(self.data):
ax.annotate(str(j), (point[0]+x_diff*0.01,point[1]+y_diff*0.01))
w = ax.scatter(self.weights[:,0], self.weights[:,1], marker="X", s=60, color="green", alpha=0.9)
input_node = ax.scatter([],[], marker="D", color="blue", s=50)
circle = plt.Circle((0,0), 0, color="b", fill=False)
ax.add_artist(circle)
w_ring, = ax.plot([], [], color="orange")
arr_p = matplotlib.collections.PatchCollection([])
ax.add_collection(arr_p);
info = ax.text(ax.get_xlim()[1]/3, ax.get_ylim()[1], "Iteration: 0 Lr: 0 Radius: 0 Ring length: 0");
'''
for frame in range(self.num_frames):
for iteration in range(self.plot_interval):
n = self.get_random()
bmu_index, bmu_dist = self.get_winner(n, self.weights)
if frame==0:
break
self.update_weights(n, bmu_index, (self.plot_interval*frame)+iteration)
#w.set_offsets(som.weights)
path_distance, sol_order = self.calc_path_dist()
#if abs(path_distance/path_distance_new)<0.1 and sol_order==sol_order_new and len(sol_order)==len(som.data):
# frame = som.num_frames+1
lr = self.lr_func(self.plot_interval*frame)
radius = self.radius_func(self.plot_interval*frame)
return sol_order, path_distance
def print_results(sol, dist, i):
print("Solution: "+str(sol))
print("Optimal solution: {:0.2f}".format(dist))
print("Length of solution: {:0.2f}".format(optimal[i]))
print("Full credit threshold: {:0.2f}".format(optimal[i]*1.1))
if dist < optimal[i]*1.1:
print("PASS")
else:
print("FAIL")