-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiter_pipeline_llama.sh
151 lines (127 loc) · 5.91 KB
/
iter_pipeline_llama.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# todo
# source xxx/miniconda3/etc/profile.d/conda.sh
SCRIPT_ABS_PATH=$(readlink -f "$0")
SCRIPT_DIR=$(dirname "$SCRIPT_ABS_PATH")
# todo
LOG_FILE="$SCRIPT_DIR/logs/YOUR_TIME_LOG_PATH.log"
ERROR_LOG_FILE="$SCRIPT_DIR/logs/YOUR_LOG_PATH.log"
ChatGLM3_data_format_dir="data/ChatGLM3/YOUR_PATH_TO_ChatGLM3_data_format_dir"
Finetune_file_name="YOUR_FINETUNE_FILE_NAME"
# todo: this is example path format
model_save_path="$SCRIPT_DIR/model/llama_finetuned_model"
kb_path="data/loogle/KB/KB_{id}.json"
kb_emb_path="data/loogle/embeddings/{bge_type}/sentence_embeddings_{id}_{chunk_size}.pkl"
kb_sentence_path="data/loogle/sentences/sentence_sentences_{id}_{chunk_size}.pkl"
# todo
total_CUDA=0,1,2,3
CUDA_1=0,1
CUDA_2=2,3
MASTER_PORT=12245
log_time() {
local cmd_description="$1"
shift
local cmd="$@"
local start_time=$(date +"%Y-%m-%d %H:%M:%S")
echo "START: [$cmd_description] at $start_time" >> "$LOG_FILE"
{ time bash -c "$cmd"; } 2>> "$ERROR_LOG_FILE"
local end_time=$(date +"%Y-%m-%d %H:%M:%S")
echo "END: [$cmd_description] at $end_time" >> "$LOG_FILE"
echo "----------------------------------------" >> "$LOG_FILE"
}
# todo: you can give iter_num, train_step_num and split_num directly or give total_train_step, KB_size and to calculate others.
# total_train_step= # todo: annotation_data/(batch_size*gradient_accumulation_steps*cuda_num)
# pairs_w_tokens=
# KB_size=
# iter_num=3
# # 32=batch_size*gradient_accumulation_steps*cuda_num
# train_step_num=$(echo "scale=0; $KB_size/32 * $pair_w_tokens / $iter_num" | bc)
# split_num=$((total_train_step / train_step_num))
iter_num=1
train_step_num=1
split_num=1
# 分割数据集
cd verify
OPTS=""
OPTS+=" --in_path ${ChatGLM3_data_format_dir}/YOUR_DATASET_PATH.json" # todo
OPTS+=" --output_dir ${ChatGLM3_data_format_dir}/${split_num}_${train_step_num}"
OPTS+=" --num $split_num"
CMD="python split_verify.py ${OPTS}"
echo "split dataset..."
log_time "${split_num}_${train_step_num} llama_split.py" "$CMD"
# 分割的数量循环
for ((step_num=1; step_num<=$iter_num; step_num+=1)); do
conda activate xxx # todo KBAda environment
export CUDA_VISIBLE_DEVICES=$total_CUDA
cd ../finetune
OPTS=""
OPTS+=" --key_word loogle" # todo: dataset key(finetune/LLaMA-Factory/data/dataset_info.json)
if [ "$step_num" -eq 1 ]; then
OPTS+=" --filename ${ChatGLM3_data_format_dir}/${split_num}_${train_step_num}/part${step_num}.json"
else
OPTS+=" --filename ${ChatGLM3_data_format_dir}/${split_num}_${train_step_num}/part${step_num}_verify.json"
fi
CMD="python change_info.py ${OPTS}"
echo "change info..."
echo "${CMD}"
log_time "${split_num}_${train_step_num} change_info.py" "$CMD" &
wait
cd ../finetune/LLaMA-Factory
conda activate xxx # todo llama_factory environment
last_num=$((step_num - 1))
next_num=$((step_num + 1))
now_step=$((train_step_num * step_num))
last_step=$((train_step_num * last_num))
echo "current path"
pwd
new_output_dir="${model_save_path}/${Finetune_file_name}_${split_num}_${train_step_num}/iter${step_num}"
new_save_steps="${train_step_num}"
new_dataset="loogle" # todo: dataset key(finetune/LLaMA-Factory/data/dataset_info.json)
checkpoint_path="${model_save_path}/${Finetune_file_name}_${split_num}_${train_step_num}/iter${last_num}/checkpoint-${last_step}"
if [ "$step_num" -ne 1 ]; then
if grep -q "^resume_from_checkpoint:" config/llama3_lora_sft.yaml; then
sed -i "s|^resume_from_checkpoint:.*|resume_from_checkpoint: $checkpoint_path|" config/llama3_lora_sft.yaml
else
printf "\nresume_from_checkpoint: $checkpoint_path\n" >> config/llama3_lora_sft.yaml
fi
else
sed -i "/^resume_from_checkpoint:.*/d" config/llama3_lora_sft.yaml
fi
sed -i "s|^output_dir:.*|output_dir: $new_output_dir|" config/llama3_lora_sft.yaml
sed -i "s|^save_steps:.*|save_steps: $new_save_steps|" config/llama3_lora_sft.yaml
sed -i "s|^dataset:.*|dataset: $new_dataset|" config/llama3_lora_sft.yaml
llamafactory-cli train config/llama3_lora_sft.yaml
# rm -r "${model_save_path}/${Finetune_file_name}_${split_num}_${train_step_num}/iter${last_num}/v1-${last_step}"
echo "-------export start------"
adapter_name_or_path="${model_save_path}/${Finetune_file_name}_${split_num}_${train_step_num}/iter${step_num}/checkpoint-${now_step}"
export_dir="${model_save_path}/${Finetune_file_name}_${split_num}_${train_step_num}/iter${step_num}/v1-${now_step}"
sed -i "s|^adapter_name_or_path:.*|adapter_name_or_path: $adapter_name_or_path|" config/llama3_merge_lora.yaml
sed -i "s|^export_dir:.*|export_dir: $export_dir|" config/llama3_merge_lora.yaml
llamafactory-cli export config/llama3_merge_lora.yaml &
wait
conda activate xxx # todo KBAda environment
if [ "$step_num" -eq $iter_num ]; then
echo "next"
else
export CUDA_VISIBLE_DEVICES=$CUDA_1
cd ../../verify
OPTS=""
OPTS+=" --kb_path $kb_path"
OPTS+=" --kb_emb_path $kb_emb_path"
OPTS+=" --kb_sentence_path $kb_sentence_path"
OPTS+=" --in_path ${ChatGLM3_data_format_dir}/${split_num}_${train_step_num}/part${next_num}.json"
OPTS+=" --out_path ${ChatGLM3_data_format_dir}/${split_num}_${train_step_num}/part${next_num}_verify.json"
OPTS+=" --model_path ${model_save_path}/${Finetune_file_name}_${split_num}_${train_step_num}/iter${step_num}/v1-${now_step}"
OPTS+=" --language English"
is_llama="true"
if [ "${is_llama}" == "true" ]; then
OPTS+=" --is_llama"
fi
CMD="python3 ./gen_iterate_verify.py ${OPTS}"
echo "-------final CMD is------"
echo "${CMD}"
echo "-------final CMD end------"
log_time "gen_iterate_verify.py (iter $step_num)" "$CMD" &
fi
wait
# rm -r "${model_save_path}/${Finetune_file_name}_${split_num}_${train_step_num}/iter${step_num}/v1-${train_step_num}"
done