-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathprompt_env.py
739 lines (675 loc) · 40.5 KB
/
prompt_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
import argparse
from data_utils import custom_load_dataset
from utils import *
import math
import gym
from gym import spaces
import copy
import string
import nltk
nltk.download('punkt', quiet=True)
from nltk.tokenize import word_tokenize, sent_tokenize
from supar import Parser
from nltk.tokenize.treebank import TreebankWordDetokenizer
from utils import setup_roberta
# Editing the instruction
def delete_phrase(candidate, phrase):
if candidate.find(' ' + phrase) > 0:
answer = candidate.replace(' ' + phrase, ' ')
elif candidate.find(phrase + ' ') > 0:
answer = candidate.replace(phrase + ' ', ' ')
else:
answer = candidate.replace(phrase, '')
return answer
def add_phrase(candidate, phrase, after):
if after == '': answer = phrase + ' ' + candidate
else:
if candidate.find(' ' + after) > 0:
answer = candidate.replace(' ' + after, ' ' + after + ' ' + phrase)
elif candidate.find(after + ' ') > 0:
answer = candidate.replace(after + ' ', after + ' ' + phrase + ' ')
else:
answer = candidate.replace(after, after + phrase )
return answer
def swap_phrases(candidate, phrase_1, phrase_2):
if candidate.find(' ' + phrase_1 + ' ') >= 0 :
candidate = candidate.replace(' ' + phrase_1 + ' ', ' <1> ')
else: candidate = candidate.replace(phrase_1, '<1>')
if candidate.find(' ' + phrase_2 + ' ') >= 0 :
candidate = candidate.replace(' ' + phrase_2 + ' ', ' <2> ')
else: candidate = candidate.replace(phrase_2, '<2>')
candidate = candidate.replace('<1>', phrase_2)
candidate = candidate.replace('<2>', phrase_1)
return candidate
def substitute_phrase(candidate, phrase):
num_beams = 10
num_return_sequences = 10
paraphrases = get_response(phrase, num_return_sequences, num_beams)
paraphrase = np.random.choice(paraphrases, 1)[0]
paraphrase = paraphrase.strip('.')
if candidate.find(' ' + phrase) > 0:
answer = candidate.replace(' ' + phrase, ' ' + paraphrase)
elif candidate.find(phrase + ' ') > 0:
answer = candidate.replace(phrase + ' ', paraphrase + ' ')
else:
answer = candidate.replace(phrase, paraphrase)
return answer
def perform_edit(edit, base, phrase_lookup, delete_tracker):
if edit == 'del':
[i] = np.random.choice(list(phrase_lookup.keys()), 1)
return delete_phrase(base, phrase_lookup[i]), [i]
elif edit == 'swap':
try: [i, j] = np.random.choice(list(phrase_lookup.keys()), 2, replace=False)
except: [i, j] = np.random.choice(list(phrase_lookup.keys()), 2, replace=True)
return swap_phrases(base, phrase_lookup[i], phrase_lookup[j]), [i, j]
elif edit == 'sub':
[i] = np.random.choice(list(phrase_lookup.keys()), 1)
return substitute_phrase(base, phrase_lookup[i]), [i]
elif edit == 'add':
keys = list(phrase_lookup.keys())
keys.append(-1)
[i] = np.random.choice(keys, 1)
if i >= 0: after = phrase_lookup[i]
else: after = ''
if len(delete_tracker) == 0: return base, []
phrase = np.random.choice(delete_tracker, 1)[0]
return add_phrase(base, phrase, after), [phrase]
# Tokenize the sentence
def traverse_tree(parsed_tree):
phrases = []
for tree in parsed_tree:
if tree.label() == '_': continue
phrases.append(detokenize(tree.leaves()))
for subtree in tree:
if type(subtree) == nltk.tree.Tree:
if subtree.label() == '_': continue
phrases.append(detokenize(subtree.leaves()))
phrases.extend(traverse_tree(subtree))
return phrases
def check_child(tree):
check = False
count = 0
total_count = 0
for subtree in tree:
total_count += 1
if type(subtree) == nltk.tree.Tree:
if subtree.label() == '_':
count += 1
if count >= total_count - count: check = True
return check
def collect_leaves(parsed_tree):
leaves = []
for tree in parsed_tree:
if type(parsed_tree) != nltk.tree.Tree: continue
if tree.label() == '_':
leaves.append(detokenize(tree.leaves()))
continue
if check_child(tree): leaves.append(detokenize(tree.leaves()))
else:
leaves.extend(collect_leaves(tree))
return leaves
def get_phrases(instruction, parser): # one possible way of obtaining disjoint phrases
phrases = []
for sentence in sent_tokenize(instruction):
parsed_tree = parser.predict(word_tokenize(sentence), verbose=False).sentences[0].trees[0]
leaves = collect_leaves(parsed_tree)
phrases.extend(leaves)
phrases = [detokenize(word_tokenize(phrase)) for phrase in phrases if phrase not in string.punctuation or phrase == '']
return phrases
def eval_accuracy(all_label_probs, test_labels, mode=None, p_cf=None):
# evaluate the accuracy with and without contextual calibration
num_classes = all_label_probs.shape[1]
if p_cf is None:
# do not calibrate
W = np.identity(num_classes)
b = np.zeros([num_classes, 1])
else:
# calibrate
if mode == "diagonal_W":
W = np.linalg.inv(np.identity(num_classes) * p_cf)
b = np.zeros([num_classes, 1])
elif mode == "identity_W":
W = np.identity(num_classes)
b = -1 * np.expand_dims(p_cf, axis=-1)
else:
assert False
correctness_list = []
total_list = []
tp = []
fp = []
fn = []
assert len(all_label_probs) == len(test_labels)
for label_probs, true_label in zip(all_label_probs, test_labels):
label_probs = label_probs / np.sum(label_probs) # normalize to 1
calibrate_label_probs = np.matmul(W, np.expand_dims(label_probs, axis=-1)) + b
ans_label = np.argmax(calibrate_label_probs)
if ans_label == true_label:
correctness_list.append(1)
else:
correctness_list.append(0)
# print(ans_label, true_label, flush=True)
if ans_label == true_label and true_label == 1:
tp.append(1)
if ans_label != true_label and ans_label == 1:
fp.append(1)
if ans_label != true_label and ans_label == 0:
fn.append(1)
total_list.append(1)
return np.sum(correctness_list), np.sum(total_list), np.sum(tp), np.sum(fp), np.sum(fn)
def get_label_probs(params, raw_resp, train_sentences, train_labels, test_sentences):
"""Obtain model's label probability for each of the test examples. The returned prob is NOT normalized"""
num_classes = len(params['label_dict'])
approx = params['approx']
assert len(raw_resp) == len(test_sentences)
# Fill in the labels that is in the top k prob
all_label_probs = []
all_missing_positions = []
for i, ans in enumerate(raw_resp):
top_logprobs = ans['logprobs']['top_logprobs'][0] # [0] since we only ask for complete one more token
label_probs = [0] * len(params['label_dict'].keys())
#TODO: changes here
# label_probs = [1e-12] * len(params['label_dict'].keys())
for j, label_list in params['label_dict'].items():
all_found = True
for label in label_list: # each possible label correspond to the same class
label = " " + label # notice prompt does not have space after 'A:'
if label in top_logprobs:
label_probs[j] += np.exp(top_logprobs[label])
else:
all_found = False
if not all_found:
position = (i, j) # (which test example, which label)
all_missing_positions.append(position)
# TODO: change this
label_probs = [1/len(params['label_dict'].keys())] * len(params['label_dict'].keys())
all_label_probs.append(label_probs)
all_label_probs = np.array(all_label_probs) # prob not normalized
# Fill in the label probs that are NOT in top k probs, by asking the model to rate perplexity
# This helps a lot in zero shot as most labels wil not be in Top 100 tokens returned by LM
if (not approx) and (len(all_missing_positions) > 0):
print(f"Missing probs: {len(all_missing_positions)}/{len(raw_resp) * num_classes}")
all_additional_prompts = []
num_prompts_each = []
for position in all_missing_positions:
which_sentence, which_label = position
test_sentence = test_sentences[which_sentence]
label_list = params['label_dict'][which_label]
for label in label_list:
prompt = construct_prompt(params, train_sentences, train_labels, test_sentence)
prompt += " " + label
all_additional_prompts.append(prompt)
num_prompts_each.append(len(label_list))
# chunk the prompts and feed into model
chunked_prompts = list(chunks(all_additional_prompts, chunk_size_helper(params)))
all_probs = []
for chunk_id, chunk in enumerate(chunked_prompts):
resp = complete(chunk, 0, params['model'], echo=True, num_log_probs=1)
for ans in resp['choices']:
prob = np.exp(ans['logprobs']['token_logprobs'][-1])
all_probs.append(prob)
assert sum(num_prompts_each) == len(all_probs)
assert len(num_prompts_each) == len(all_missing_positions)
# fill in corresponding entries in all_label_probs
for index, num in enumerate(num_prompts_each):
probs = []
while num > 0:
probs.append(all_probs.pop(0))
num -= 1
prob = np.sum(probs)
i, j = all_missing_positions[index]
all_label_probs[i][j] = prob
assert len(all_probs) == 0, "all should be popped"
assert (all_label_probs > 0).all(), "all should be populated with non-zero value"
return all_label_probs # NOT NORMALIZED
def get_phrase_lookup(base_candidate, parser):
return {p:phrase for p, phrase in enumerate(get_phrases(base_candidate, parser))}
# Not used for now
if args.level == 'phrase': phrase_lookup = {p:phrase for p, phrase in enumerate(get_phrases(base_candidate))}
elif args.level == 'word':
words = word_tokenize(base_candidate)
words = [w for w in words if w not in string.punctuation or w != '']
phrase_lookup = {p:phrase for p, phrase in enumerate(words)}
elif args.level == 'sentence':
sentences = sent_tokenize(base_candidate)
phrase_lookup = {p:phrase for p, phrase in enumerate(sentences)}
elif args.level == 'span':
phrases = []
for sentence in sent_tokenize(base_candidate):
spans_per_sentence = np.random.choice(range(2,5)) # split sentence into 2, 3, 4, 5 chunks
spans = np.array_split(word_tokenize(sentence), spans_per_sentence)
spans = [detokenize(s) for s in spans]
phrases.extend(spans)
phrase_lookup = {p:phrase for p, phrase in enumerate(phrases)}
else: raise ValueError()
return phrase_lookup
def detokenize(tokens):
return TreebankWordDetokenizer().detokenize(tokens)
# This environment supports parallel
class LMForwardEnvNoPrefix(gym.Env):
"""Custom Environment that follows gym interface"""
def __init__(self, params, prompt_sentence_pool, prompt_label_pool, all_prompt_sentence_pool, all_prompt_label_pool, add_prompt_sentence_pool, add_prompt_label_pool, train_sentences, train_labels, max_steps, num_processes, obs_size, gpu_id=0, entropy_coef=0, loss_type='ce', verbalizer=False, evaluate=False):
super(LMForwardEnvNoPrefix, self).__init__()
self.params = params
self.prompt_sentence_pool = prompt_sentence_pool
self.prompt_label_pool = prompt_label_pool
self.all_prompt_sentence_pool = all_prompt_sentence_pool
self.all_prompt_label_pool = all_prompt_label_pool
self.add_prompt_sentence_pool = add_prompt_sentence_pool
self.add_prompt_label_pool = add_prompt_label_pool
self.train_sentences = train_sentences
self.train_labels = train_labels
self.current_prompt = self.prompt_sentence_pool
self.current_prompt_labels = self.prompt_label_pool
self.deleted_prompt = []
self.deleted_prompt_labels = []
self.latent_type = 'embedding'
self.loss_type = loss_type
self.max_steps = max_steps
self.subset_size = num_processes
self.num_processes = num_processes
self.evaluate = evaluate
self.rew_scale = 100.0
self.entropy_coef = entropy_coef
self.verbalizer = verbalizer
self.correct_bonus = 2.0
self.incorrect_bonus = 1.8
self.terminate = []
if 'roberta' in params['model']:
self.model, self.tokenizer = setup_roberta(params['model'], gpu_id)
else:
assert False
# Prefix editing
parser = Parser.load('crf-con-en')
prefix_candidate = detokenize(word_tokenize("The task is to do sentiment analysis"))
self.prompt_swap_length = int(params['num_shots']*(params['num_shots']-1)/2) + 1 + params['num_shots']
self.prefix_phrase_total_length = self.prompt_swap_length + params['num_shots'] * (params['example_pool_size'] - params['num_shots'])
self.current_sentence = None
self.current_label = None
self.previous_loss = None
self.idxs = None
self.steps = 0
self.swap_idxs1 = []
self.swap_idxs2 = []
self.swap_idxs1.append(0)
self.swap_idxs2.append(0)
for i in range(params['num_shots']):
for j in range(i+1, params['num_shots']):
self.swap_idxs1.append(i)
self.swap_idxs2.append(j)
for i in range(params['num_shots']):
self.swap_idxs1.append(i)
self.swap_idxs2.append(i)
# swap current prompt with pool
for i in range(params['num_shots']):
for j in range(params['example_pool_size'] - params['num_shots']):
self.swap_idxs1.append(i)
self.swap_idxs2.append(j)
# 3 Verbalizer Dataset formating
from promptsource.templates import DatasetTemplates
if params['dataset'] == 'customer_review':
self.prompt_templates = DatasetTemplates('glue/sst2')
else:
self.prompt_templates = DatasetTemplates(params['dataset'])
self.prompt_template_keys = self.prompt_templates.all_template_names
for key in self.prompt_template_keys:
answer_lists = self.prompt_templates[key].answer_choices.split("|||")
for promt_answer, correct_answer in zip(answer_lists, self.params['inv_label_dict'].keys()):
self.prompt_templates[key].jinja = self.prompt_templates[key].jinja.replace(promt_answer.strip(), correct_answer)
self.current_verbalizer = []
self.deleted_verbalizer = []
self.subset_verbalizer = []
self.prefix_phrase_verbalizer_total_length = self.prefix_phrase_total_length + len(self.prompt_template_keys)*params['num_shots']
print('action space: ', self.prefix_phrase_verbalizer_total_length)
if self.verbalizer:
self.action_space = spaces.Discrete(self.prefix_phrase_verbalizer_total_length)
else:
self.action_space = spaces.Discrete(self.prefix_phrase_total_length)
self.observation_space = spaces.Box(-np.inf, np.inf, (obs_size * (params['example_pool_size'] + 1 - params['num_shots'] + params['num_shots'] * len(self.prompt_template_keys)) + 3,))
self.embedding_prepared = torch.tensor(np.array([False])).share_memory_()
self.current_prompt_embedding_pool = torch.zeros((len(self.train_sentences), params['num_shots'], obs_size)).share_memory_()
self.add_current_prompt_embedding_pool = torch.zeros((len(self.train_sentences), params['example_pool_size'] - params['num_shots'], obs_size)).share_memory_()
self.current_verbalizer_embedding_pool = torch.zeros((len(self.train_sentences), params['num_shots'], len(self.prompt_template_keys), obs_size)).share_memory_()
self.add_current_verbalizer_embedding_pool = torch.zeros((len(self.train_sentences), params['example_pool_size'] - params['num_shots'], len(self.prompt_template_keys), obs_size)).share_memory_()
if not self.evaluate:
self.prepare_embedding()
def prepare_embedding(self):
print('Preparing Embedding', flush=True)
prompt_sentence_pool = [copy.deepcopy(self.prompt_sentence_pool) for _ in range(len(self.train_sentences))]
prompt_label_pool = [copy.deepcopy(self.prompt_label_pool) for _ in range(len(self.train_sentences))]
add_prompt_sentence_pool = [copy.deepcopy(self.add_prompt_sentence_pool) for _ in range(len(self.train_sentences))]
add_prompt_label_pool = [copy.deepcopy(self.add_prompt_label_pool) for _ in range(len(self.train_sentences))]
current_verbalizer_pool = [[0 for _ in range(len(self.prompt_sentence_pool))] for _ in range(len(self.train_sentences))]
add_current_verbalizer_pool = [[0 for _ in range(self.params['example_pool_size'] - len(self.prompt_sentence_pool))] for _ in range(len(self.train_sentences))]
subset_verbalizer_pool = [0 for _ in range(len(self.train_sentences))]
self._current_prompt_embedding_pool = self.embedding(prompt_sentence_pool, prompt_label_pool, current_verbalizer_pool, self.train_sentences, subset_verbalizer_pool)
self._add_current_prompt_embedding_pool = self.embedding(add_prompt_sentence_pool, add_prompt_label_pool, add_current_verbalizer_pool, self.train_sentences, subset_verbalizer_pool)
self._current_verbalizer_embedding_pool = []
for verbalizer in range(len(self.prompt_template_keys)):
self._current_verbalizer_embedding_pool.append(self.embedding(prompt_sentence_pool, prompt_label_pool, (np.array(current_verbalizer_pool)+verbalizer).tolist(), self.train_sentences, subset_verbalizer_pool))
self._current_verbalizer_embedding_pool = np.transpose(np.array(self._current_verbalizer_embedding_pool), axes=(1, 2, 0, 3)).tolist()
self._add_current_verbalizer_embedding_pool = []
for verbalizer in range(len(self.prompt_template_keys)):
self._add_current_verbalizer_embedding_pool.append(self.embedding(add_prompt_sentence_pool, add_prompt_label_pool, (np.array(add_current_verbalizer_pool)+verbalizer).tolist(), self.train_sentences, subset_verbalizer_pool))
self._add_current_verbalizer_embedding_pool = np.transpose(np.array(self._add_current_verbalizer_embedding_pool), axes=(1, 2, 0, 3)).tolist()
self.current_prompt_embedding_pool[:] = torch.tensor(self._current_prompt_embedding_pool)
self.add_current_prompt_embedding_pool[:] = torch.tensor(self._add_current_prompt_embedding_pool)
self.current_verbalizer_embedding_pool[:] = torch.tensor(self._current_verbalizer_embedding_pool)
self.add_current_verbalizer_embedding_pool[:] = torch.tensor(self._add_current_verbalizer_embedding_pool)
print(len(self._add_current_prompt_embedding_pool), np.array(self._add_current_prompt_embedding_pool[0]).shape)
print(len(self._current_prompt_embedding_pool), np.array(self._current_prompt_embedding_pool[0]).shape)
print(len(self._current_verbalizer_embedding_pool), np.array(self._current_verbalizer_embedding_pool[0]).shape)
print(len(self._add_current_verbalizer_embedding_pool), np.array(self._add_current_verbalizer_embedding_pool[0]).shape)
print('Finish Preparing Embedding', flush=True)
self.embedding_prepared[:] = torch.tensor(np.array([True]))
def load_ckpt(self, file_path, i, num_test):
_current_prompt_embedding_pool = torch.load(file_path+'current_prompt_embedding_pool.pth')
_add_current_prompt_embedding_pool = torch.load(file_path+'add_current_prompt_embedding_pool.pth')
_current_verbalizer_embedding_pool = torch.load(file_path+'current_verbalizer_embedding_pool.pth')
_add_current_verbalizer_embedding_pool = torch.load(file_path+'add_current_verbalizer_embedding_pool.pth')
self.current_prompt_embedding_pool[:] = _current_prompt_embedding_pool[i*num_test:(i+1)*num_test]
self.add_current_prompt_embedding_pool[:] = _add_current_prompt_embedding_pool[i*num_test:(i+1)*num_test]
self.current_verbalizer_embedding_pool[:] = _current_verbalizer_embedding_pool[i*num_test:(i+1)*num_test]
self.add_current_verbalizer_embedding_pool[:] = _add_current_verbalizer_embedding_pool[i*num_test:(i+1)*num_test]
print('Finish Preparing Embedding', flush=True)
self.embedding_prepared[:] = torch.tensor(np.array([True]))
def get_obs(self, obs, actions):
all_obs = obs
all_obs = np.concatenate([all_obs, np.array(self.add_current_prompt_embedding).reshape(all_obs.shape[0], -1)], axis=-1)
all_obs = np.concatenate([all_obs, np.array(self.current_verbalizer_embedding).reshape(all_obs.shape[0], -1)], axis=-1)
all_obs = np.concatenate([all_obs, np.expand_dims(np.array(self.terminate).astype(float)*0+self.steps, -1)], axis=-1)
all_obs = np.concatenate([all_obs, np.expand_dims(np.array(self.terminate).astype(float), -1)], axis=-1)
all_obs = np.concatenate([all_obs, np.array(actions).reshape(all_obs.shape[0], -1)], axis=-1)
return all_obs
def verbalize(self, current_sentences, current_verbalizer, subset=False):
if subset:
return_sentences = []
for sentences, verbalizer in zip(current_sentences, current_verbalizer):
prompt = self.prompt_templates[self.prompt_template_keys[verbalizer]]
return_sentences.append(prompt.apply(sentences)[0])
return return_sentences
else:
return_sentences = []
for sentences, verbalizer in zip(current_sentences, current_verbalizer):
return_sentences.append([])
for i, sentence in enumerate(sentences):
prompt = self.prompt_templates[self.prompt_template_keys[verbalizer[i]]]
return_sentences[-1].append(prompt.apply(sentence)[0])
return return_sentences
def step(self, action):
# Execute one time step within the environment
action = action.squeeze(-1)
idx = 0
for terminate, act, sentence_index, sentence, label, embedding, ver_embedding, add_sentence_index, add_sentence, add_label, add_embedding, add_ver_embedding, delete_sentence, delete_label, delete_embedding, delete_ver_embedding, verbalizer, add_verbalizer, delete_verbalizer, subset_verbalizer in \
zip(self.terminate, action.tolist(), self.current_prompt_index, self.current_prompt, self.current_prompt_labels, self.current_prompt_embedding, self.current_verbalizer_embedding, self.add_current_prompt_index, self.add_current_prompt, self.add_current_prompt_labels, \
self.add_current_prompt_embedding, self.add_current_verbalizer_embedding, self.deleted_prompt, self.deleted_prompt_labels, self.deleted_prompt_embedding, self.deleted_verbalizer_embedding, self.current_verbalizer, self.add_current_verbalizer, self.deleted_verbalizer, self.subset_verbalizer):
# print(idx1, idx2, len(sentence), len(label), len(delete_sentence), len(delete_label))
if not terminate:
if act < self.prefix_phrase_total_length:
#TODO: maybe we need to swap verbalizer as we swap example
idx1 = self.swap_idxs1[act]
idx2 = self.swap_idxs2[act]
if idx1 == idx2:
self.terminate[idx] = True
if idx1 >= 0 and idx2 >= 0 and act < self.prompt_swap_length:
if idx1 < len(sentence) and idx2 < len(sentence):
sentence[idx1], sentence[idx2] = copy.deepcopy(sentence[idx2]), copy.deepcopy(sentence[idx1])
label[idx1], label[idx2] = copy.deepcopy(label[idx2]), copy.deepcopy(label[idx1])
embedding[idx1], embedding[idx2] = copy.deepcopy(embedding[idx2]), copy.deepcopy(embedding[idx1])
ver_embedding[idx1], ver_embedding[idx2] = copy.deepcopy(ver_embedding[idx2]), copy.deepcopy(ver_embedding[idx1])
verbalizer[idx1], verbalizer[idx2] = copy.deepcopy(verbalizer[idx2]), copy.deepcopy(verbalizer[idx1])
sentence_index[idx1], sentence_index[idx2] = copy.deepcopy(sentence_index[idx2]), copy.deepcopy(sentence_index[idx1])
else:
print('case 1 ', idx1, idx2, len(sentence), len(add_sentence))
exit()
elif idx1 >= 0 and idx2 >= 0:
if idx1 < len(sentence) and idx2 < len(add_sentence):
sentence[idx1], add_sentence[idx2] = copy.deepcopy(add_sentence[idx2]), copy.deepcopy(sentence[idx1])
label[idx1], add_label[idx2] = copy.deepcopy(add_label[idx2]), copy.deepcopy(label[idx1])
embedding[idx1], add_embedding[idx2] = copy.deepcopy(add_embedding[idx2]), copy.deepcopy(embedding[idx1])
ver_embedding[idx1], add_ver_embedding[idx2] = copy.deepcopy(add_ver_embedding[idx2]), copy.deepcopy(ver_embedding[idx1])
sentence_index[idx1], add_sentence_index[idx2] = copy.deepcopy(add_sentence_index[idx2]), copy.deepcopy(sentence_index[idx1])
else:
print('case 2', idx1, idx2, len(sentence), len(add_sentence))
exit()
#TODO: comment out for now
elif self.verbalizer and act < self.prefix_phrase_verbalizer_total_length:
act = act - self.prefix_phrase_total_length
verbalize_idx = act % self.params['num_shots']
if act == len(self.prompt_template_keys)*self.params['num_shots']:
assert False
elif verbalize_idx < len(verbalizer):
verbalizer[verbalize_idx] = int(act / self.params['num_shots'])
embedding[verbalize_idx] = copy.deepcopy(np.array(ver_embedding)[verbalize_idx, int(act / self.params['num_shots'])])
else:
assert False
idx += 1
if self.verbalizer:
verbalized_prompt = self.verbalize(self.current_prompt, self.current_verbalizer)
verbalized_pool = self.verbalize(self.add_current_prompt, self.add_current_verbalizer)
subset_sentences = self.verbalize(self.subset_sentences, self.subset_verbalizer, subset=True)
else:
verbalized_prompt = self.current_prompt
verbalized_pool = self.add_prompt_sentence_pool
subset_sentences = self.subset_sentences
raw_resp, obs = get_model_response_parallel(self.params, self.model, self.tokenizer, verbalized_prompt, self.current_prompt_labels, subset_sentences)
all_label_probs = get_label_probs(self.params, raw_resp, verbalized_prompt, self.current_prompt_labels, subset_sentences)
assert len(all_label_probs) == len(self.subset_labels)
label_probs = all_label_probs / np.sum(all_label_probs, axis=-1, keepdims=True)
self.steps += 1
if self.loss_type == 'ce':
onehot = np.zeros((all_label_probs.shape))
onehot[np.arange(all_label_probs.shape[0]), np.array(self.subset_labels)] = 1
loss = -np.sum(onehot*np.log(label_probs+1e-6), axis=-1)
entropy = -np.sum(label_probs*np.log(label_probs+1e-6), axis=-1)
reward = self.previous_loss - self.entropy_coef * entropy - loss
self.previous_loss = copy.deepcopy(loss)
elif self.loss_type == 'step':
predicts = np.argmax(label_probs, axis=-1)
correct = (predicts == np.array(self.subset_labels)).astype(float)
correct_probs = label_probs[np.arange(all_label_probs.shape[0]), np.array(self.subset_labels)]
not_label_probs = torch.where(
torch.Tensor(label_probs) == torch.Tensor(correct_probs).unsqueeze(1),
torch.Tensor([-1]), torch.Tensor(label_probs))
# [batch_size, num_classes]
max_not_label_probs, _ = torch.max(not_label_probs, -1)
# [batch_size, 1]
# Compute piecewise gap reward
gap = (torch.Tensor(correct_probs) - max_not_label_probs)
correct = (gap > 0).long()
step_reward = gap * (self.correct_bonus * correct + self.incorrect_bonus * (1 - correct))
step_reward = step_reward.numpy()
reward = step_reward - self.previous_loss
self.previous_loss = copy.deepcopy(step_reward)
elif self.loss_type == 'acc':
predicts = np.argmax(label_probs, axis=-1)
entropy = -np.sum(label_probs*np.log(label_probs+1e-6), axis=-1)
correct = (predicts == np.array(self.subset_labels)).astype(float) * 2 - 1 + self.entropy_coef * entropy
reward = correct - self.previous_loss
self.previous_loss = copy.deepcopy(correct)
if self.loss_type == 'ce_sparse':
onehot = np.zeros((all_label_probs.shape))
onehot[np.arange(all_label_probs.shape[0]), np.array(self.subset_labels)] = 1
loss = -np.sum(onehot*np.log(label_probs+1e-6), axis=-1)
entropy = -np.sum(label_probs*np.log(label_probs+1e-6), axis=-1)
reward = -loss
self.previous_loss = copy.deepcopy(loss)
if self.steps >= self.max_steps:
reward = reward
else:
reward = reward * 0
elif self.loss_type == 'step_sparse':
predicts = np.argmax(label_probs, axis=-1)
correct = (predicts == np.array(self.subset_labels)).astype(float)
correct_probs = label_probs[np.arange(all_label_probs.shape[0]), np.array(self.subset_labels)]
not_label_probs = torch.where(
torch.Tensor(label_probs) == torch.Tensor(correct_probs).unsqueeze(1),
torch.Tensor([-1]), torch.Tensor(label_probs))
# [batch_size, num_classes]
max_not_label_probs, _ = torch.max(not_label_probs, -1)
# [batch_size, 1]
# Compute piecewise gap reward
gap = (torch.Tensor(correct_probs) - max_not_label_probs)
correct = (gap > 0).long()
step_reward = gap * (self.correct_bonus * correct + self.incorrect_bonus * (1 - correct))
step_reward = step_reward.numpy()
if self.steps >= self.max_steps:
reward = step_reward
else:
reward = step_reward * 0
elif self.loss_type == 'acc_sparse':
predicts = np.argmax(label_probs, axis=-1)
entropy = -np.sum(label_probs*np.log(label_probs+1e-6), axis=-1)
correct = (predicts == np.array(self.subset_labels)).astype(float) * 2 - 1 + self.entropy_coef * entropy
reward = correct
if self.steps >= self.max_steps:
reward = reward
else:
reward = reward * 0
# Reward Scaling
reward = reward * self.rew_scale
if self.steps >= self.max_steps:
done = np.ones(self.subset_size)
if self.evaluate:
correct, total, tp, fp, fn = eval_accuracy(all_label_probs, self.subset_labels)
info = {'episode_r': reward, 'correct': correct, 'total': total, 'orig_correct': self.orig_correct, 'orig_total': self.orig_total,
'tp': tp, 'fp': fp, 'fn': fn}
else:
info = {'episode_r': reward, 'step_r': step_reward * self.rew_scale}
else:
done = np.zeros(self.subset_size)
info = {'episode_r': reward, 'step_r': step_reward * self.rew_scale}
return_obs = self.get_obs(obs, self.prev_actions)
self.prev_actions = copy.deepcopy(np.array(action))
return return_obs, reward, done, info
def embedding(self, prompts, labels, verbalizer, sentences, sentences_verbalizer):
verbalized_prompt = self.verbalize(prompts, verbalizer)
verbalized_sentences = self.verbalize(sentences, sentences_verbalizer, subset=True)
all_embeddings = []
for prompt_idx in range(len(verbalized_prompt[0])):
prompt_subset = [[prompt[prompt_idx]] for prompt in verbalized_prompt]
label_subset = [[label[prompt_idx]] for label in labels]
_, obs = get_model_response_parallel(self.params, self.model, self.tokenizer, prompt_subset, label_subset, verbalized_sentences)
all_embeddings.append(copy.deepcopy(obs))
return_embeddings = []
for sentence_idx in range(len(verbalized_sentences)):
_return_embeddings = []
for prompt_idx in range(len(verbalized_prompt[0])):
_return_embeddings.append(all_embeddings[prompt_idx][sentence_idx])
return_embeddings.append(_return_embeddings)
return return_embeddings
def reset(self, idx=None, terminate=None):
self.steps = 0
if self.idxs is not None and self.evaluate:
self.subset_size = self.idxs.shape[0]
subset_idxs = self.idxs
else:
self.subset_size = self.num_processes
subset_idxs = np.random.choice(np.arange(len(self.train_sentences)), self.subset_size, replace=True)
self.subset_idxs = subset_idxs
self.terminate = [False for _ in range(self.subset_size)]
self.prev_actions = np.array([0 for _ in range(self.subset_size)])
self.subset_sentences = [copy.deepcopy(self.train_sentences[i]) for i in subset_idxs]
self.subset_labels = [copy.deepcopy(self.train_labels[i]) for i in subset_idxs]
# Reset the verbalizer
self.current_verbalizer = [[0 for _ in range(self.params['num_shots'])] for _ in range(len(self.subset_sentences))]
self.add_current_verbalizer = [[0 for _ in range(self.params['example_pool_size'] - self.params['num_shots'])] for _ in range(len(self.subset_sentences))]
self.deleted_verbalizer = [[] for _ in range(len(self.subset_sentences))]
self.subset_verbalizer = [0 for _ in range(len(self.subset_sentences))]
self.all_verbalizer = [0 for _ in range(len(self.all_prompt_sentence_pool))]
# KNN select
# First sample a batch of sentences
self.current_prompt = [copy.deepcopy(self.prompt_sentence_pool) for _ in range(len(self.subset_sentences))]
self.current_prompt_labels = [copy.deepcopy(self.prompt_label_pool) for _ in range(len(self.subset_sentences))]
self.current_prompt_index = [np.arange(len(self.prompt_sentence_pool)) for _ in range(len(self.subset_sentences))]
self.add_current_prompt = [copy.deepcopy(self.add_prompt_sentence_pool) for _ in range(len(self.subset_sentences))]
self.add_current_prompt_labels = [copy.deepcopy(self.add_prompt_label_pool) for _ in range(len(self.subset_sentences))]
self.add_current_prompt_index = [np.arange(len(self.add_prompt_sentence_pool))+len(self.prompt_sentence_pool) for _ in range(len(self.subset_sentences))]
self.deleted_prompt = [[] for _ in range(len(self.subset_sentences))]
self.deleted_prompt_labels = [[] for _ in range(len(self.subset_sentences))]
self.current_prompt_embedding = [copy.deepcopy(self.current_prompt_embedding_pool[i].numpy()) for i in subset_idxs]
self.add_current_prompt_embedding = [copy.deepcopy(self.add_current_prompt_embedding_pool[i].numpy()) for i in subset_idxs]
self.deleted_prompt_embedding = [[] for _ in range(len(self.subset_sentences))]
self.current_verbalizer_embedding = [copy.deepcopy(self.current_verbalizer_embedding_pool[i].numpy()) for i in subset_idxs]
self.add_current_verbalizer_embedding = [copy.deepcopy(self.add_current_verbalizer_embedding_pool[i].numpy()) for i in subset_idxs]
self.deleted_verbalizer_embedding = [[] for _ in range(len(self.subset_sentences))]
#TODO: changes here
if not self.evaluate and self.params['random_init'] > 0:
for i in range(self.subset_size):
idxs = np.random.permutation(self.params['example_pool_size'])
all_prompt = self.current_prompt[i] + self.add_current_prompt[i]
all_prompt_label = self.current_prompt_labels[i] + self.add_current_prompt_labels[i]
all_prompt_index = self.current_prompt_index[i].tolist() + self.add_current_prompt_index[i].tolist()
self.current_prompt[i] = [copy.deepcopy(all_prompt[idx]) for idx in idxs[:self.params['num_shots']]]
self.current_prompt_labels[i] = [copy.deepcopy(all_prompt_label[idx]) for idx in idxs[:self.params['num_shots']]]
self.current_prompt_index[i] = [copy.deepcopy(all_prompt_index[idx]) for idx in idxs[:self.params['num_shots']]]
self.add_current_prompt[i] = [copy.deepcopy(all_prompt[idx]) for idx in idxs[self.params['num_shots']:]]
self.add_current_prompt_labels[i] = [copy.deepcopy(all_prompt_label[idx]) for idx in idxs[self.params['num_shots']:]]
self.add_current_prompt_index[i] = [copy.deepcopy(all_prompt_index[idx]) for idx in idxs[self.params['num_shots']:]]
all_prompt_embedding = np.concatenate([np.array(self.current_prompt_embedding[i]), np.array(self.add_current_prompt_embedding[i])], axis=0)
all_verbalizer_embedding = np.concatenate([np.array(self.current_verbalizer_embedding[i]), np.array(self.add_current_verbalizer_embedding[i])], axis=0)
self.current_prompt_embedding[i] = [copy.deepcopy(all_prompt_embedding[idx]) for idx in idxs[:self.params['num_shots']]]
self.add_current_prompt_embedding[i] = [copy.deepcopy(all_prompt_embedding[idx]) for idx in idxs[self.params['num_shots']:]]
self.current_verbalizer_embedding[i] = [copy.deepcopy(all_verbalizer_embedding[idx]) for idx in idxs[:self.params['num_shots']]]
self.add_current_verbalizer_embedding[i] = [copy.deepcopy(all_verbalizer_embedding[idx]) for idx in idxs[self.params['num_shots']:]]
if self.params['random_init'] > 1:
self.current_verbalizer[i] = np.random.randint(len(self.prompt_template_keys), size=self.params['num_shots']).tolist()
if self.params['random_init'] > 2:
self.add_current_verbalizer[i] = np.random.randint(len(self.prompt_template_keys), size=self.params['example_pool_size'] - self.params['num_shots']).tolist()
if self.verbalizer:
verbalized_prompt = self.verbalize(self.current_prompt, self.current_verbalizer)
verbalized_pool = self.verbalize(self.add_current_prompt, self.add_current_verbalizer)
subset_sentences = self.verbalize(self.subset_sentences, self.subset_verbalizer, subset=True)
else:
verbalized_prompt = self.current_prompt
verbalized_pool = self.add_prompt_sentence_pool
subset_sentences = self.subset_sentences
raw_resp, obs = get_model_response_parallel(self.params, self.model, self.tokenizer, verbalized_prompt, self.current_prompt_labels, subset_sentences)
all_label_probs = get_label_probs(self.params, raw_resp, verbalized_prompt, self.current_prompt_labels, subset_sentences)
if self.evaluate:
self.orig_correct, self.orig_total, _, _, _ = eval_accuracy(all_label_probs, self.subset_labels)
assert len(all_label_probs) == len(self.subset_labels)
label_probs = all_label_probs / np.sum(all_label_probs, axis=-1, keepdims=True)
if self.loss_type == 'ce':
onehot = np.zeros((all_label_probs.shape))
onehot[np.arange(all_label_probs.shape[0]), np.array(self.subset_labels)] = 1
loss = -np.sum(onehot*np.log(label_probs+1e-6), axis=-1)
entropy = -np.sum(label_probs*np.log(label_probs+1e-6), axis=-1)
self.previous_loss = copy.deepcopy(loss) - self.entropy_coef * entropy
elif self.loss_type == 'step':
predicts = np.argmax(label_probs, axis=-1)
correct = (predicts == np.array(self.subset_labels)).astype(float)
correct_probs = label_probs[np.arange(all_label_probs.shape[0]), np.array(self.subset_labels)]
not_label_probs = torch.where(
torch.Tensor(label_probs) == torch.Tensor(correct_probs).unsqueeze(1),
torch.Tensor([-1]), torch.Tensor(label_probs))
# [batch_size, num_classes]
max_not_label_probs, _ = torch.max(not_label_probs, -1)
# [batch_size, 1]
# Compute piecewise gap reward
gap = (torch.Tensor(correct_probs) - max_not_label_probs)
correct = (gap > 0).long()
step_reward = gap * (self.correct_bonus * correct + self.incorrect_bonus * (1 - correct))
step_reward = step_reward.numpy()
self.previous_loss = copy.deepcopy(step_reward)
elif self.loss_type == 'acc':
predicts = np.argmax(label_probs, axis=-1)
entropy = -np.sum(label_probs*np.log(label_probs+1e-6), axis=-1)
correct = (predicts == np.array(self.subset_labels)).astype(float) * 2 - 1 + self.entropy_coef * entropy
self.previous_loss = copy.deepcopy(correct)
elif self.loss_type == 'step_sparse':
predicts = np.argmax(label_probs, axis=-1)
correct = (predicts == np.array(self.subset_labels)).astype(float)
correct_probs = label_probs[np.arange(all_label_probs.shape[0]), np.array(self.subset_labels)]
not_label_probs = torch.where(
torch.Tensor(label_probs) == torch.Tensor(correct_probs).unsqueeze(1),
torch.Tensor([-1]), torch.Tensor(label_probs))
# [batch_size, num_classes]
max_not_label_probs, _ = torch.max(not_label_probs, -1)
# [batch_size, 1]
# Compute piecewise gap reward
gap = (torch.Tensor(correct_probs) - max_not_label_probs)
correct = (gap > 0).long()
step_reward = gap * (self.correct_bonus * correct + self.incorrect_bonus * (1 - correct))
step_reward = step_reward.numpy()
self.previous_loss = copy.deepcopy(step_reward)
return self.get_obs(obs, self.prev_actions)