-
Notifications
You must be signed in to change notification settings - Fork 8
/
utils.py
411 lines (372 loc) · 20.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import numpy as np
import time
from copy import deepcopy
import os
import sys
import torch
import pickle
import openai
from transformers import GPT2Tokenizer, GPT2LMHeadModel, RobertaConfig, RobertaTokenizer, RobertaForMaskedLM
ROOT_DIR = os.path.dirname(os.path.realpath(__file__))
SAVE_DIR = os.path.join(ROOT_DIR, 'saved_results')
if not os.path.isdir(SAVE_DIR):
os.mkdir(SAVE_DIR)
print(f"mkdir at {SAVE_DIR} for saving results")
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def chunk_size_helper(params):
# Set the batch size (the size of the chunks determines the batch size). Default to 4 for GPT-2 and 20 for OpenAI if
# no batch size is specified.
bs = params['bs']
if bs is None:
if 'gpt2' in params['model']:
return 1
else:
assert params['model'] in ['ada', 'babbage', 'curie', 'davinci', 'ada-beta', 'babbage-beta', 'curie-beta', 'davinci-beta']
return 20
else:
return bs
def random_sampling(sentences, labels, num):
"""randomly sample subset of the training pairs"""
assert len(sentences) == len(labels)
if num > len(labels):
assert False, f"you tried to randomly sample {num}, which is more than the total size of the pool {len(labels)}"
idxs = np.random.choice(len(labels), size=num, replace=False)
selected_sentences = [sentences[i] for i in idxs]
selected_labels = [labels[i] for i in idxs]
return deepcopy(selected_sentences), deepcopy(selected_labels)
def setup_roberta(model_name, gpu_id):
config = RobertaConfig.from_pretrained(model_name)
roberta_tokenizer = RobertaTokenizer.from_pretrained(model_name)
roberta_model = RobertaForMaskedLM.from_pretrained(model_name, config=config)
roberta_model.eval().to('cuda:'+str(gpu_id))
print("Finished Model Setup")
return roberta_model, roberta_tokenizer
def complete_roberta(params, roberta_model, roberta_tokenizer, prompt, l=10, model_name='roberta-large', num_log_probs=None, echo=False, verbalizer=None):
''' This function runs GPT-2 locally but places the outputs into an json that looks just like the one
provided by the OpenAI API. '''
# rank = torch.distributed.get_rank()
# local_rank = int(os.getenv('LOCAL_RANK', '0'))
# world_size = int(os.getenv('WORLD_SIZE', '1'))
if isinstance(prompt, str):
prompt = [prompt] # the code below assumes a list
for prompt_idx in range(len(prompt)):
prompt[prompt_idx] += ' <mask>'
if verbalizer is None:
label_idx = [roberta_tokenizer.convert_tokens_to_ids('\u0120'+label) for label in params['inv_label_dict'].keys()]
else:
label_idx = [roberta_tokenizer.convert_tokens_to_ids('\u0120'+label) for label in verbalizer[0].keys()]
input_ids = roberta_tokenizer.batch_encode_plus(prompt, return_tensors="pt").to(roberta_model.device)
if input_ids['input_ids'].shape[1] > 512:
input_ids['input_ids'] = input_ids['input_ids'][:, -512:]
input_ids['attention_mask'] = input_ids['attention_mask'][:, -512:]
mask_ids = (input_ids['input_ids'] == 50264)[0].nonzero(as_tuple=True)[0]
# they want the probs of the top tokens
if num_log_probs is not None:
# we are left padding, so we need to adjust the position IDs
attention_mask = (input_ids['input_ids'] != 50256).float()
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
outputs_list = []
with torch.no_grad():
outputs = roberta_model(**input_ids, output_hidden_states=True)
logits = outputs.logits.detach().cpu()
embeddings = outputs.hidden_states[-1][:, mask_ids[0]].detach().cpu().numpy()
if not echo:
# get the top tokens and probs for the generated l tokens
probs = torch.softmax(logits[:, mask_ids].float(), dim=2).cpu()
else:
assert False
# get the top tokens and probs for the context and the generated l tokens
probs = torch.softmax(logits.float(), dim=2).cpu()
top_tokens = torch.cat([torch.tensor(np.array(label_idx)).to(probs.device).unsqueeze(0).unsqueeze(0) for _ in range(probs.shape[0])], dim=0)
top_probs = probs[:, :, torch.tensor(np.array(label_idx)).to(probs.device)]
logprobs = torch.log(probs)
top_log_probs = torch.log(top_probs)
total_sequences = input_ids['input_ids']
# create the return value to resemble OpenAI
return_json = {}
choices = []
for batch_id in range(len(prompt)):
curr_json = {}
# text is just the optional context and next l tokens
if not echo:
curr_json['text'] = roberta_tokenizer.decode(total_sequences[batch_id][mask_ids], skip_special_tokens=True)
else:
assert False
curr_json['text'] = roberta_tokenizer.decode(total_sequences[batch_id], skip_special_tokens=True)
# fill the return json with the top tokens and probs to match the OpenAI return value.
if num_log_probs is not None:
curr_json['logprobs'] = {}
curr_json['logprobs']['top_logprobs'] = []
curr_json['logprobs']['token_logprobs'] = []
curr_json['logprobs']['tokens'] = []
if not echo:
# cutoff the -1 here because the probs are shifted one over for LMs
for current_element_top_log_probs, current_element_top_tokens in zip(top_log_probs[batch_id], top_tokens[batch_id]):
# tokens is a list of the top token at each position
curr_json['logprobs']['tokens'].append(roberta_tokenizer.decode([current_element_top_tokens[0]]))
# token_logprobs is a list of the logprob of the top token at each position
curr_json['logprobs']['token_logprobs'].append(current_element_top_log_probs[0].item())
# top_logprobs is a list of dicts for the top K tokens. with each entry being {'token_name': log_prob}
temp = {}
for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
temp[roberta_tokenizer.decode(token.item())] = log_prob.item()
curr_json['logprobs']['top_logprobs'].append(temp)
else:
assert False
# same as not above but small tweaks
# we add null to the front because for the GPT models, they have null probability for the first token
# (for some reason they don't have an beginning of sentence token)
curr_json['logprobs']['top_logprobs'].append('null')
# cutoff the -1 here because the probs are shifted one over for LMs
for index, (current_element_top_log_probs, current_element_top_tokens) in enumerate(zip(top_log_probs[batch_id][:-1], top_tokens[batch_id][:-1])):
# skip padding tokens
if total_sequences[batch_id][index].item() == 50256:
continue
temp = {}
for log_prob, token in zip(current_element_top_log_probs, current_element_top_tokens):
temp[roberta_tokenizer.decode(token.item())] = log_prob.item()
curr_json['logprobs']['top_logprobs'].append(temp)
for index in range(len(probs[batch_id])):
curr_json['logprobs']['tokens'].append(roberta_tokenizer.decode([total_sequences[batch_id][index]]))
curr_json['logprobs']['token_logprobs'].append('null')
for index, log_probs_token_position_j in enumerate(logprobs[batch_id][:-1]):
# probs are left shifted for LMs
curr_json['logprobs']['token_logprobs'].append(log_probs_token_position_j[total_sequences[batch_id][index+1]])
choices.append(curr_json)
return_json['choices'] = choices
return return_json, embeddings
def complete(params, model, tokenizer, prompt, l, model_name, temp=0, num_log_probs=None, echo=False, n=None, verbalizer=None):
"""complete the prompt using a language model"""
assert l >= 0
assert temp >= 0
if 'roberta' in model_name:
assert n == None # unsupported at the moment
assert temp == 0 # unsupported at the moment
# setup_roberta(model)
return complete_roberta(params, model, tokenizer, prompt, l=l, model_name=model, num_log_probs=num_log_probs, echo=echo, verbalizer=verbalizer)
def construct_prompt(params, train_sentences, train_labels, test_sentence):
"""construct a single prompt to be fed into the model"""
# special case when the user defines a custom prompt function.
if ('prompt_func' in params.keys()) and (params['prompt_func'] is not None):
return params['prompt_func'](params, train_sentences, train_labels, test_sentence)
# take the prompt template and fill in the training and test example
prompt = params["prompt_prefix"]
q_prefix = params["q_prefix"]
a_prefix = params["a_prefix"]
for s, l in zip(train_sentences, train_labels):
prompt += q_prefix
prompt += s + "\n"
if isinstance(l, int) or isinstance(l, np.int32) or isinstance(l, np.int64): # integer labels for classification
assert params['task_format'] == 'classification'
l_str = params["label_dict"][l][0] if isinstance(params["label_dict"][l], list) else params["label_dict"][l]
else:
assert isinstance(l, str) # string labels
assert params['task_format'] == 'qa'
l_str = l
prompt += a_prefix
prompt += l_str + "\n\n"
prompt += q_prefix
prompt += test_sentence + "\n"
assert a_prefix[-1] == ' '
prompt += a_prefix[:-1] # GPT models do not want a trailing space, so we cut off -1
return prompt
def get_model_response(params, train_sentences, train_labels, test_sentences, return_all_prompts=False,
num_tokens_to_predict_override=None, override_prompt=None):
"""
Obtain model's responses on test sentences, given the training examples
:param params: parameters for the experiment
:param train_sentences: few-shot training sentences
:param train_labels: few-shot training labels
:param test_sentences: few-shot test sentences
:param return_all_prompts: whether to return all the prompts
:param num_tokens_to_predict_override: whether to override num token to predict
:param override_prompt: whether to override prompt
:return: a list of dictionaries
"""
all_raw_answers = []
# can optionally ignore the normal prompt and feed in a custom prompt (used for contextual calibration)
if override_prompt is None:
prompts = []
for test_sentence in test_sentences:
prompts.append(construct_prompt(params, train_sentences, train_labels, test_sentence))
else:
prompts = override_prompt
chunked_prompts = list(chunks(prompts, chunk_size_helper(params)))
for chunk_id, test_chunk_prompts in enumerate(chunked_prompts):
if num_tokens_to_predict_override is not None:
num_tokens_to_predict = num_tokens_to_predict_override
else:
num_tokens_to_predict = params['num_tokens_to_predict']
resp = complete(test_chunk_prompts, num_tokens_to_predict, params['model'], num_log_probs=params['api_num_log_prob'])
for answer_id, answer in enumerate(resp['choices']):
all_raw_answers.append(answer)
if return_all_prompts:
return all_raw_answers, prompts
else:
return all_raw_answers
def construct_prompt_parallel(params, train_sentences, train_labels, test_sentence, verbalizers=None, prefix=None):
"""construct a single prompt to be fed into the model"""
# special case when the user defines a custom prompt function.
# if ('prompt_func' in params.keys()) and (params['prompt_func'] is not None):
# return params['prompt_func'](params, train_sentences, train_labels, test_sentence)
# take the prompt template and fill in the training and test example
if prefix is None:
prompt = params["prompt_prefix"]
else:
prompt = prefix
q_prefix = params["q_prefix"]
a_prefix = params["a_prefix"]
if verbalizers is None:
for s, l in zip(train_sentences, train_labels):
if s == "" and l == "":
continue
prompt += q_prefix
prompt += s + "\n"
if isinstance(l, int) or isinstance(l, np.int32) or isinstance(l, np.int64): # integer labels for classification
# assert params['task_format'] == 'classification'
l_str = params["label_dict"][l][0] if isinstance(params["label_dict"][l], list) else params["label_dict"][l]
else:
assert isinstance(l, str) # string labels
# assert params['task_format'] == 'qa'
l_str = l
prompt += a_prefix
prompt += l_str + "\n\n"
else:
for s, l, v in zip(train_sentences, train_labels, verbalizers):
if s == "" and l == "":
continue
prompt += q_prefix
prompt += s + "\n"
if isinstance(l, int) or isinstance(l, np.int32) or isinstance(l, np.int64): # integer labels for classification
# assert params['task_format'] == 'classification'
# l_str = params["label_dict"][l][0] if isinstance(params["label_dict"][l], list) else params["label_dict"][l]
l_str = list(v.keys())[l]
else:
assert isinstance(l, str) # string labels
# assert params['task_format'] == 'qa'
l_str = l
prompt += a_prefix
prompt += l_str + "\n\n"
prompt += q_prefix
prompt += test_sentence + "\n"
assert a_prefix[-1] == ' '
prompt += a_prefix[:-1] # GPT models do not want a trailing space, so we cut off -1
return prompt
def get_model_response_parallel(params, model, tokenizer, train_sentences, train_labels, test_sentences, prefix=None, return_all_prompts=False,
num_tokens_to_predict_override=None, override_prompt=None, verbalizer=None, prompt_verbalizer=None):
"""
Obtain model's responses on test sentences, given the training examples
:param params: parameters for the experiment
:param train_sentences: few-shot training sentences
:param train_labels: few-shot training labels
:param test_sentences: few-shot test sentences
:param return_all_prompts: whether to return all the prompts
:param num_tokens_to_predict_override: whether to override num token to predict
:param override_prompt: whether to override prompt
:return: a list of dictionaries
"""
all_raw_answers = []
all_embeddings = []
# can optionally ignore the normal prompt and feed in a custom prompt (used for contextual calibration)
if override_prompt is None:
prompts = []
if prompt_verbalizer is not None:
if prefix is not None:
for _train_sentences, _train_labels, _prompt_verbalizer, test_sentence, _prefix in zip(train_sentences, train_labels, prompt_verbalizer, test_sentences, prefix):
prompts.append(construct_prompt_parallel(params, _train_sentences, _train_labels, test_sentence, prefix=_prefix, verbalizers=_prompt_verbalizer))
else:
for _train_sentences, _train_labels, _prompt_verbalizer, test_sentence in zip(train_sentences, train_labels, prompt_verbalizer, test_sentences):
prompts.append(construct_prompt_parallel(params, _train_sentences, _train_labels, test_sentence, verbalizers=_prompt_verbalizer))
else:
if prefix is not None:
for _train_sentences, _train_labels, test_sentence, _prefix in zip(train_sentences, train_labels, test_sentences, prefix):
prompts.append(construct_prompt_parallel(params, _train_sentences, _train_labels, test_sentence, prefix=_prefix))
else:
for _train_sentences, _train_labels, test_sentence in zip(train_sentences, train_labels, test_sentences):
prompts.append(construct_prompt_parallel(params, _train_sentences, _train_labels, test_sentence))
else:
prompts = override_prompt
if verbalizer is not None:
chunked_prompts = list(chunks(prompts, chunk_size_helper(params)))
chunked_verbalizers = list(chunks(verbalizer, chunk_size_helper(params)))
for chunk_id, (test_chunk_prompts, test_chunk_verbalizers) in enumerate(zip(chunked_prompts, chunked_verbalizers)):
if num_tokens_to_predict_override is not None:
num_tokens_to_predict = num_tokens_to_predict_override
else:
num_tokens_to_predict = params['num_tokens_to_predict']
# TODO: remove the top k log probs
resp, embeddings = complete(params, model, tokenizer, test_chunk_prompts, num_tokens_to_predict, params['model'], num_log_probs=params['api_num_log_prob'], verbalizer=test_chunk_verbalizers)
# resp, embeddings = complete(test_chunk_prompts, num_tokens_to_predict, params['model'], num_log_probs=1000)
for answer_id, answer in enumerate(resp['choices']):
all_raw_answers.append(answer)
all_embeddings.append(embeddings.astype(float))
else:
chunked_prompts = list(chunks(prompts, chunk_size_helper(params)))
for chunk_id, test_chunk_prompts in enumerate(chunked_prompts):
if num_tokens_to_predict_override is not None:
num_tokens_to_predict = num_tokens_to_predict_override
else:
num_tokens_to_predict = params['num_tokens_to_predict']
# TODO: remove the top k log probs
resp, embeddings = complete(params, model, tokenizer, test_chunk_prompts, num_tokens_to_predict, params['model'], num_log_probs=params['api_num_log_prob'])
# resp, embeddings = complete(test_chunk_prompts, num_tokens_to_predict, params['model'], num_log_probs=1000)
for answer_id, answer in enumerate(resp['choices']):
all_raw_answers.append(answer)
all_embeddings.append(embeddings.astype(float))
if return_all_prompts:
return all_raw_answers, np.concatenate(all_embeddings, axis=0), prompts
else:
return all_raw_answers, np.concatenate(all_embeddings, axis=0)
def load_pickle(params):
# load saved results from model
file_name = os.path.join(SAVE_DIR, f"{params['expr_name']}.pkl")
assert os.path.isfile(file_name), f"file does not exist: {file_name}"
with open(file_name, 'rb') as file:
data = pickle.load(file)
print(f"Loaded data from {file_name}")
return data
def save_pickle(params, data):
# save results from model
file_name = os.path.join(SAVE_DIR, f"{params['expr_name']}.pkl")
if os.path.isfile(file_name):
print("WARNING! overwriting existing saved files")
with open(file_name, 'wb') as file:
pickle.dump(data, file)
print(f"Saved to {file_name}")
return data
def print_results(tree, names=('Original Accuracy ','Calibrated Accuracy')):
# print out all results
root = deepcopy(tree)
for dataset in root.keys():
print(f"\n\nDataset: {dataset}")
models_node = root[dataset]
for model in models_node.keys():
print(f"\nModel: {model}")
num_shots_node = models_node[model]
for num_shots in num_shots_node.keys():
accuracies = np.array(list(num_shots_node[num_shots].values()))
accuracies_mean = np.mean(accuracies, axis=0)
accuracies_low = np.min(accuracies, axis=0)
accuracies_high = np.max(accuracies, axis=0)
accuracies_std = np.std(accuracies, axis=0)
print(f"\n{num_shots}-shot, {len(accuracies)} seeds")
for i, (m, l, h, s) in enumerate(zip(accuracies_mean, accuracies_low, accuracies_high, accuracies_std)):
print(f"{names[i]} | Mean: {m:.4f}, Low: {l:.4f}, High: {h:.4f}, Std: {s:.4f}")
print()
def load_results(params_list):
# load saved results from model
result_tree = dict()
for params in params_list:
saved_result = load_pickle(params)
keys = [params['dataset'], params['model'], params['num_shots']]
node = result_tree # root
for k in keys:
if not (k in node.keys()):
node[k] = dict()
node = node[k]
node[params['seed']] = saved_result['accuracies']
print_results(result_tree)