diff --git a/man/details_boost_tree_lightgbm.Rd b/man/details_boost_tree_lightgbm.Rd index 1853eed15..b5ee3dd0a 100644 --- a/man/details_boost_tree_lightgbm.Rd +++ b/man/details_boost_tree_lightgbm.Rd @@ -175,7 +175,7 @@ that the booster will perform bagging at every \code{k}th boosting iteration. Thus, by default, the \code{sample_size} argument would be ignored without setting this argument manually. Other boosting libraries, like xgboost, do not have an analogous argument to \code{bagging_freq} and use \code{k = 1} when -the analogue to \code{bagging_fraction} is in $(0, 1)$. \emph{bonsai will thus +the analogue to \code{bagging_fraction} is in $\verb{(0, 1)}$. \emph{bonsai will thus automatically set} \code{bagging_freq = 1} \emph{in} \code{set_engine("lightgbm", ...)} if \code{sample_size} (i.e. \code{bagging_fraction}) is not equal to 1 and no \code{bagging_freq} value is supplied. This default can be overridden by diff --git a/man/details_linear_reg_glmer.Rd b/man/details_linear_reg_glmer.Rd index 67d8745bb..ae354daa5 100644 --- a/man/details_linear_reg_glmer.Rd +++ b/man/details_linear_reg_glmer.Rd @@ -52,7 +52,7 @@ linear predictor (\verb{\eta}) for a random intercept: \if{html}{\out{
}}\preformatted{\eta_\{i\} = (\beta_0 + b_\{0i\}) + \beta_1x_\{i1\} }\if{html}{\out{
}} -where $i$ denotes the \code{i}th independent experimental unit +where $\code{i}$ denotes the \code{i}th independent experimental unit (e.g. subject). When the model has seen subject \code{i}, it can use that subject’s data to adjust the \emph{population} intercept to be more specific to that subjects results. diff --git a/man/details_linear_reg_lme.Rd b/man/details_linear_reg_lme.Rd index 3c9c70096..fd9362d3d 100644 --- a/man/details_linear_reg_lme.Rd +++ b/man/details_linear_reg_lme.Rd @@ -44,7 +44,7 @@ linear predictor (\verb{\eta}) for a random intercept: \if{html}{\out{
}}\preformatted{\eta_\{i\} = (\beta_0 + b_\{0i\}) + \beta_1x_\{i1\} }\if{html}{\out{
}} -where $i$ denotes the \code{i}th independent experimental unit +where $\code{i}$ denotes the \code{i}th independent experimental unit (e.g. subject). When the model has seen subject \code{i}, it can use that subject’s data to adjust the \emph{population} intercept to be more specific to that subjects results. diff --git a/man/details_linear_reg_lmer.Rd b/man/details_linear_reg_lmer.Rd index 0441f464a..26a917fc4 100644 --- a/man/details_linear_reg_lmer.Rd +++ b/man/details_linear_reg_lmer.Rd @@ -44,7 +44,7 @@ linear predictor (\verb{\eta}) for a random intercept: \if{html}{\out{
}}\preformatted{\eta_\{i\} = (\beta_0 + b_\{0i\}) + \beta_1x_\{i1\} }\if{html}{\out{
}} -where $i$ denotes the \code{i}th independent experimental unit +where $\code{i}$ denotes the \code{i}th independent experimental unit (e.g. subject). When the model has seen subject \code{i}, it can use that subject’s data to adjust the \emph{population} intercept to be more specific to that subjects results. diff --git a/man/details_linear_reg_stan_glmer.Rd b/man/details_linear_reg_stan_glmer.Rd index 3bcb67ddf..6c6ae4f2a 100644 --- a/man/details_linear_reg_stan_glmer.Rd +++ b/man/details_linear_reg_stan_glmer.Rd @@ -64,7 +64,7 @@ linear predictor (\verb{\eta}) for a random intercept: \if{html}{\out{
}}\preformatted{\eta_\{i\} = (\beta_0 + b_\{0i\}) + \beta_1x_\{i1\} }\if{html}{\out{
}} -where $i$ denotes the \code{i}th independent experimental unit +where $\code{i}$ denotes the \code{i}th independent experimental unit (e.g. subject). When the model has seen subject \code{i}, it can use that subject’s data to adjust the \emph{population} intercept to be more specific to that subjects results. diff --git a/man/details_logistic_reg_glmer.Rd b/man/details_logistic_reg_glmer.Rd index b848df19c..6d7882bed 100644 --- a/man/details_logistic_reg_glmer.Rd +++ b/man/details_logistic_reg_glmer.Rd @@ -44,7 +44,7 @@ linear predictor (\verb{\eta}) for a random intercept: \if{html}{\out{
}}\preformatted{\eta_\{i\} = (\beta_0 + b_\{0i\}) + \beta_1x_\{i1\} }\if{html}{\out{
}} -where $i$ denotes the \code{i}th independent experimental unit +where $\code{i}$ denotes the \code{i}th independent experimental unit (e.g. subject). When the model has seen subject \code{i}, it can use that subject’s data to adjust the \emph{population} intercept to be more specific to that subjects results. diff --git a/man/details_logistic_reg_stan_glmer.Rd b/man/details_logistic_reg_stan_glmer.Rd index ce1281501..6dc9d78d3 100644 --- a/man/details_logistic_reg_stan_glmer.Rd +++ b/man/details_logistic_reg_stan_glmer.Rd @@ -63,7 +63,7 @@ linear predictor (\verb{\eta}) for a random intercept: \if{html}{\out{
}}\preformatted{\eta_\{i\} = (\beta_0 + b_\{0i\}) + \beta_1x_\{i1\} }\if{html}{\out{
}} -where $i$ denotes the \code{i}th independent experimental unit +where $\code{i}$ denotes the \code{i}th independent experimental unit (e.g. subject). When the model has seen subject \code{i}, it can use that subject’s data to adjust the \emph{population} intercept to be more specific to that subjects results. diff --git a/man/details_poisson_reg_glmer.Rd b/man/details_poisson_reg_glmer.Rd index 5a32c17bd..277d40325 100644 --- a/man/details_poisson_reg_glmer.Rd +++ b/man/details_poisson_reg_glmer.Rd @@ -44,7 +44,7 @@ linear predictor (\verb{\eta}) for a random intercept: \if{html}{\out{
}}\preformatted{\eta_\{i\} = (\beta_0 + b_\{0i\}) + \beta_1x_\{i1\} }\if{html}{\out{
}} -where $i$ denotes the \code{i}th independent experimental unit +where $\code{i}$ denotes the \code{i}th independent experimental unit (e.g. subject). When the model has seen subject \code{i}, it can use that subject’s data to adjust the \emph{population} intercept to be more specific to that subjects results. diff --git a/man/details_poisson_reg_stan_glmer.Rd b/man/details_poisson_reg_stan_glmer.Rd index ef1065ada..a15f0f787 100644 --- a/man/details_poisson_reg_stan_glmer.Rd +++ b/man/details_poisson_reg_stan_glmer.Rd @@ -63,7 +63,7 @@ linear predictor (\verb{\eta}) for a random intercept: \if{html}{\out{
}}\preformatted{\eta_\{i\} = (\beta_0 + b_\{0i\}) + \beta_1x_\{i1\} }\if{html}{\out{
}} -where $i$ denotes the \code{i}th independent experimental unit +where $\code{i}$ denotes the \code{i}th independent experimental unit (e.g. subject). When the model has seen subject \code{i}, it can use that subject’s data to adjust the \emph{population} intercept to be more specific to that subjects results.