We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
num_comp
option_add()
discrim_flexible
The usual method of finalizing tunable parameters in a workflow set is not working with num_comp for discrim_flexible workflows
library(tidymodels) library(tidyverse) library(discrim) #> #> Attaching package: 'discrim' #> The following object is masked from 'package:dials': #> #> smoothness library(AppliedPredictiveModeling) library(future) set.seed(321) data <- quadBoundaryFunc(2000) %>% select(A = X1, B = X2, class) data_splits1 <- initial_split(data, prop = .85, strata = class) train_datas1 <- training(data_splits1) test_datas1 <- testing(data_splits1) foldss1 <- vfold_cv(train_datas1, v = 5, repeats = 3, strata = class) biv_rec <- recipe(class ~ ., data = train_datas1) %>% step_normalize(all_predictors()) discrim_flexible_spec <- discrim_flexible(num_terms = tune::tune(), prod_degree = tune::tune(), prune_method = tune::tune()) %>% set_engine('earth') %>% set_mode('classification') normalizeds1 <- workflow_set( preproc = list(norm = biv_rec), models = list(FD = discrim_flexible_spec) ) normalizeds1 %>% extract_workflow("norm_FD") %>% extract_parameter_set_dials() #> Collection of 3 parameters for tuning #> #> identifier type object #> num_terms num_terms nparam[?] #> prod_degree prod_degree nparam[+] #> prune_method prune_method dparam[+] #> #> Model parameters needing finalization: #> # Model Terms ('num_terms') #> #> See `?dials::finalize` or `?dials::update.parameters` for more information. pars <- normalizeds1 %>% extract_workflow("norm_FD") %>% extract_parameter_set_dials() %>% finalize(x = train_datas1 %>% select(-class)) pars #> Collection of 3 parameters for tuning #> #> identifier type object #> num_terms num_terms nparam[+] #> prod_degree prod_degree nparam[+] #> prune_method prune_method dparam[+] normalizeds1 <- normalizeds1 %>% option_add(param_info = pars, id = "norm_FD") normalizeds1 %>% extract_workflow("norm_FD") %>% extract_parameter_set_dials() #> Collection of 3 parameters for tuning #> #> identifier type object #> num_terms num_terms nparam[?] #> prod_degree prod_degree nparam[+] #> prune_method prune_method dparam[+] #> #> Model parameters needing finalization: #> # Model Terms ('num_terms') #> #> See `?dials::finalize` or `?dials::update.parameters` for more information. # 'num_comp' is not getting updated bayes_ctrl <- control_bayes( save_pred = TRUE, parallel_over = "everything", save_workflow = TRUE, verbose = T ) plan(multisession) tune_bayes(normalizeds1 %>% extract_workflow("norm_FD"), seed = 1503, resamples = foldss1, metrics = metric_set(roc_auc, brier_class, kap, accuracy), iter = 25, verbose = T, initial = 11, control = bayes_ctrl) #> Error in `dials::grid_latin_hypercube()`: #> ✖ This argument contains unknowns: `num_terms`. #> ℹ See the `dials::finalize()` function. # Error: This argument contains unknowns: `num_terms`. plan(sequential)
Created on 2024-06-20 with reprex v2.1.0
sessionInfo() #> R version 4.4.0 (2024-04-24) #> Platform: aarch64-apple-darwin20 #> Running under: macOS Sonoma 14.5 #> #> Matrix products: default #> BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib #> LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0 #> #> locale: #> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8 #> #> time zone: UTC #> tzcode source: internal #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] future_1.33.2 AppliedPredictiveModeling_1.1-7 #> [3] discrim_1.0.1 lubridate_1.9.3 #> [5] forcats_1.0.0 stringr_1.5.1 #> [7] readr_2.1.5 tidyverse_2.0.0 #> [9] yardstick_1.3.1 workflowsets_1.1.0 #> [11] workflows_1.1.4 tune_1.2.1 #> [13] tidyr_1.3.1 tibble_3.2.1 #> [15] rsample_1.2.1 recipes_1.0.10 #> [17] purrr_1.0.2 parsnip_1.2.1 #> [19] modeldata_1.3.0 infer_1.0.7 #> [21] ggplot2_3.5.1 dplyr_1.1.4 #> [23] dials_1.2.1 scales_1.3.0 #> [25] broom_1.0.6 tidymodels_1.2.0 #> #> loaded via a namespace (and not attached): #> [1] rlang_1.1.4 magrittr_2.0.3 furrr_0.3.1 #> [4] rpart.plot_3.1.2 compiler_4.4.0 vctrs_0.6.5 #> [7] reshape2_1.4.4 lhs_1.1.6 pkgconfig_2.0.3 #> [10] fastmap_1.2.0 backports_1.5.0 utf8_1.2.4 #> [13] rmarkdown_2.27 prodlim_2023.08.28 tzdb_0.4.0 #> [16] xfun_0.44 reprex_2.1.0 styler_1.10.3 #> [19] parallel_4.4.0 cluster_2.1.6 R6_2.5.1 #> [22] CORElearn_1.57.3 stringi_1.8.4 parallelly_1.37.1 #> [25] rpart_4.1.23 Rcpp_1.0.12 iterators_1.0.14 #> [28] knitr_1.47 future.apply_1.11.2 R.utils_2.12.3 #> [31] Matrix_1.7-0 splines_4.4.0 nnet_7.3-19 #> [34] R.cache_0.16.0 timechange_0.3.0 tidyselect_1.2.1 #> [37] rstudioapi_0.16.0 yaml_2.3.8 timeDate_4032.109 #> [40] codetools_0.2-20 listenv_0.9.1 lattice_0.22-6 #> [43] plyr_1.8.9 withr_3.0.0 evaluate_0.23 #> [46] survival_3.7-0 pillar_1.9.0 foreach_1.5.2 #> [49] ellipse_0.5.0 generics_0.1.3 hms_1.1.3 #> [52] munsell_0.5.1 plotmo_3.6.3 globals_0.16.3 #> [55] class_7.3-22 glue_1.7.0 mda_0.5-4 #> [58] tools_4.4.0 data.table_1.15.4 gower_1.0.1 #> [61] fs_1.6.4 grid_4.4.0 plotrix_3.8-4 #> [64] ipred_0.9-14 colorspace_2.1-0 earth_5.3.3 #> [67] Formula_1.2-5 cli_3.6.2 DiceDesign_1.10 #> [70] fansi_1.0.6 lava_1.8.0 gtable_0.3.5 #> [73] R.methodsS3_1.8.2 GPfit_1.0-8 digest_0.6.35 #> [76] htmltools_0.5.8.1 R.oo_1.26.0 lifecycle_1.0.4 #> [79] hardhat_1.4.0 MASS_7.3-60.2
The text was updated successfully, but these errors were encountered:
No branches or pull requests
The problem
The usual method of finalizing tunable parameters in a workflow set is not working with
num_comp
fordiscrim_flexible
workflowsReproducible example
Created on 2024-06-20 with reprex v2.1.0
Session info
The text was updated successfully, but these errors were encountered: