forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
infer.py
240 lines (209 loc) Β· 10.1 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import six
import json
import psutil
import argparse
import numpy as np
from paddlenlp.utils.log import logger
from paddlenlp.prompt import AutoTemplate, PromptDataCollatorWithPadding
from paddlenlp.transformers import AutoTokenizer, AutoModelForMaskedLM
import paddle2onnx
import onnxruntime as ort
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--model_path_prefix", type=str, required=True, help="The path prefix of inference model to be used.")
parser.add_argument("--model_name", default="ernie-3.0-base-zh", type=str, help="The name of pretrained model.")
parser.add_argument("--data_dir", default=None, type=str, help="The path to the prediction data, including label.txt and data.txt.")
parser.add_argument("--max_length", default=128, type=int, help="The maximum total input sequence length after tokenization.")
parser.add_argument("--use_fp16", action='store_true', help="Whether to use fp16 inference, only takes effect when deploying on gpu.")
parser.add_argument("--batch_size", default=200, type=int, help="Batch size per GPU/CPU for predicting.")
parser.add_argument("--num_threads", default=psutil.cpu_count(logical=False), type=int, help="num_threads for cpu.")
parser.add_argument("--device", choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--device_id", default=0, help="Select which gpu device to train model.")
args = parser.parse_args()
# yapf: enable
class InferBackend(object):
def __init__(self,
model_path_prefix,
device="cpu",
device_id=0,
use_fp16=False,
num_threads=10):
if not isinstance(device, six.string_types):
logger.error(
">>> [InferBackend] The type of device must be string, but the type you set is: ",
type(device))
exit(0)
if device not in ['cpu', 'gpu']:
logger.error(
">>> [InferBackend] The device must be cpu or gpu, but your device is set to:",
type(device))
exit(0)
logger.info(">>> [InferBackend] Creating Engine ...")
onnx_model = paddle2onnx.command.c_paddle_to_onnx(
model_file=model_path_prefix + ".pdmodel",
params_file=model_path_prefix + ".pdiparams",
opset_version=13,
enable_onnx_checker=True)
infer_model_dir = model_path_prefix.rsplit("/", 1)[0]
float_onnx_file = os.path.join(infer_model_dir, "model.onnx")
with open(float_onnx_file, "wb") as f:
f.write(onnx_model)
if device == "gpu":
logger.info(">>> [InferBackend] Use GPU to inference ...")
providers = ['CUDAExecutionProvider']
if use_fp16:
logger.info(">>> [InferBackend] Use FP16 to inference ...")
from onnxconverter_common import float16
import onnx
fp16_model_file = os.path.join(infer_model_dir,
"fp16_model.onnx")
onnx_model = onnx.load_model(float_onnx_file)
trans_model = float16.convert_float_to_float16(
onnx_model, keep_io_types=True)
onnx.save_model(trans_model, fp16_model_file)
onnx_model = fp16_model_file
else:
logger.info(">>> [InferBackend] Use CPU to inference ...")
providers = ['CPUExecutionProvider']
if use_fp16:
logger.warning(
">>> [InferBackend] Ignore use_fp16 as it only " +
"takes effect when deploying on gpu...")
sess_options = ort.SessionOptions()
sess_options.intra_op_num_threads = num_threads
self.predictor = ort.InferenceSession(onnx_model,
sess_options=sess_options,
providers=providers,
provider_options=[{
'device_id':
device_id
}])
if device == "gpu":
try:
assert 'CUDAExecutionProvider' in self.predictor.get_providers()
except AssertionError:
raise AssertionError(
f"The environment for GPU inference is not set properly. "
"A possible cause is that you had installed both onnxruntime and onnxruntime-gpu. "
"Please run the following commands to reinstall: \n "
"1) pip uninstall -y onnxruntime onnxruntime-gpu \n 2) pip install onnxruntime-gpu"
)
logger.info(">>> [InferBackend] Engine Created ...")
def infer(self, input_dict: dict):
result = self.predictor.run(None, input_dict)
return result
class MultiClassPredictor(object):
def __init__(self, args):
self.args = args
self.tokenizer = AutoTokenizer.from_pretrained(args.model_name)
self.model = AutoModelForMaskedLM.from_pretrained(args.model_name)
self.template, self.labels, self.input_handles = self.post_init()
self.collate_fn = PromptDataCollatorWithPadding(
self.tokenizer,
padding=True,
return_tensors="np",
return_attention_mask=True)
self.inference_backend = InferBackend(self.args.model_path_prefix,
self.args.device,
self.args.device_id,
self.args.use_fp16,
self.args.num_threads)
def post_init(self):
export_path = os.path.dirname(self.args.model_path_prefix)
template_path = os.path.join(export_path, "template_config.json")
with open(template_path, "r") as fp:
prompt = json.load(fp)
template = AutoTemplate.create_from(prompt, self.tokenizer,
self.args.max_length,
self.model)
keywords = template.extract_template_keywords(template.prompt)
inputs = [
"input_ids", "token_type_ids", "position_ids", "attention_mask"
]
if "mask" in keywords:
inputs.append("masked_positions")
if "soft" in keywords:
inputs.append("soft_token_ids")
if "encoder" in keywords:
inputs.append("encoder_ids")
verbalizer_path = os.path.join(export_path, "verbalizer_config.json")
with open(verbalizer_path, "r") as fp:
label_words = json.load(fp)
labels = sorted(list(label_words.keys()))
return template, labels, inputs
def predict(self, input_data: list):
encoded_inputs = self.preprocess(input_data)
infer_result = self.infer_batch(encoded_inputs)
result = self.postprocess(infer_result)
self.printer(result, input_data)
return result
def _infer(self, input_dict):
infer_data = self.inference_backend.infer(input_dict)
return infer_data
def infer_batch(self, inputs):
num_sample = len(inputs)
infer_data = None
num_infer_data = None
for index in range(0, num_sample, self.args.batch_size):
left, right = index, index + self.args.batch_size
batch_dict = self.collate_fn(inputs[left:right])
input_dict = {}
for key in self.input_handles:
value = batch_dict[key]
if key == "attention_mask":
if value.ndim == 2:
value = (1 - value[:, np.newaxis, np.newaxis, :]) * -1e4
elif value.ndim != 4:
raise ValueError(
"Expect attention mask with ndim=2 or 4, but get ndim={}"
.format(value.ndim))
value = value.astype("float32")
else:
value = value.astype("int64")
input_dict[key] = value
results = self._infer(input_dict)
if infer_data is None:
infer_data = [[x] for x in results]
num_infer_data = len(results)
else:
for i in range(num_infer_data):
infer_data[i].append(results[i])
for i in range(num_infer_data):
infer_data[i] = np.concatenate(infer_data[i], axis=0)
return infer_data
def preprocess(self, input_data: list):
text = [{"text_a": x} for x in input_data]
inputs = [self.template(x) for x in text]
return inputs
def postprocess(self, infer_data):
preds = np.argmax(infer_data[0], axis=-1)
labels = [self.labels[x] for x in preds]
return {"label": labels}
def printer(self, result, input_data):
label = result["label"]
for i in range(len(label)):
logger.info("input data: {}".format(input_data[i]))
logger.info("labels: {}".format(label[i]))
logger.info("-----------------------------")
if __name__ == "__main__":
for arg_name, arg_value in vars(args).items():
logger.info("{:20}: {}".format(arg_name, arg_value))
predictor = MultiClassPredictor(args)
text_dir = os.path.join(args.data_dir, "data.txt")
with open(text_dir, "r", encoding="utf-8") as f:
text_list = [x.strip() for x in f.readlines()]
predictor.predict(text_list)