|  | 
|  | 1 | +# LetStmt Inlining in TileLang | 
|  | 2 | + | 
|  | 3 | +This document explains how `LetStmt` inlining works in TileLang's simplification pipeline, which is an important optimization that affects code generation and performance. | 
|  | 4 | + | 
|  | 5 | +## Overview | 
|  | 6 | + | 
|  | 7 | +A `LetStmt` (Let Statement) is a temporary variable binding in the IR (Intermediate Representation). During compilation, TileLang's simplifier may choose to inline these temporary variables to simplify the code. TileLang also provides a standalone `LetInline` pass that performs eager substitution before the main legalization pipeline. However, not all `LetStmt` nodes can be safely inlined. | 
|  | 8 | + | 
|  | 9 | +## When Does LetStmt Get Inlined? | 
|  | 10 | + | 
|  | 11 | +The inlining logic is implemented in `src/transform/simplify.cc`. A `LetStmt` will be inlined if **both** of the following conditions are met: | 
|  | 12 | + | 
|  | 13 | +### 1. The value satisfies `CanInlineLetStmt` | 
|  | 14 | + | 
|  | 15 | +The `CanInlineLetStmt` helper returns `true` when: | 
|  | 16 | + | 
|  | 17 | +- **The value is a constant** (`is_const_number(op->value)` returns true) | 
|  | 18 | +- **The value is a variable** (`op->value.as<VarNode>()` returns a node) | 
|  | 19 | +- **The value is an integer expression without side effects**: | 
|  | 20 | +  - The value has `int` dtype | 
|  | 21 | +  - The side effect level is `kPure` or lower (no observable side effects) | 
|  | 22 | + | 
|  | 23 | +```cpp | 
|  | 24 | +bool CanInlineLetStmt(const LetStmtNode *op) { | 
|  | 25 | +  if (is_const_number(op->value)) | 
|  | 26 | +    return true; | 
|  | 27 | +  if (op->value.as<VarNode>()) | 
|  | 28 | +    return true; | 
|  | 29 | +  // Won't face the deep expression explosion problem as in Let expression. | 
|  | 30 | +  // attempt to inline as much as possible if the value integer type(can be | 
|  | 31 | +  // index). | 
|  | 32 | +  if (!op->value.dtype().is_int()) | 
|  | 33 | +    return false; | 
|  | 34 | +  return SideEffect(op->value) <= CallEffectKind::kPure; | 
|  | 35 | +} | 
|  | 36 | +``` | 
|  | 37 | + | 
|  | 38 | +### 2. The variable is NOT used in buffer definitions | 
|  | 39 | + | 
|  | 40 | +Even if `CanInlineLetStmt` returns true, the variable will **not** be inlined if it's used in a buffer's definition (shape, strides, elem_offset, or data fields). | 
|  | 41 | + | 
|  | 42 | +This protection exists because: | 
|  | 43 | +- Buffer definitions are not updated during the simplification pass | 
|  | 44 | +- If a variable used in a buffer definition is inlined, later references to that buffer would fail to find the variable definition | 
|  | 45 | +- This would cause compilation errors or incorrect behavior | 
|  | 46 | + | 
|  | 47 | +The mutator checks this before dropping the binding: | 
|  | 48 | + | 
|  | 49 | +```cpp | 
|  | 50 | +bool used_in_buffer_def = used_in_buffer_def_.count(op->var.get()); | 
|  | 51 | + | 
|  | 52 | +if (can_inline && !used_in_buffer_def) { | 
|  | 53 | +    return body;  // Inline: remove LetStmt and return body directly | 
|  | 54 | +} | 
|  | 55 | +``` | 
|  | 56 | + | 
|  | 57 | +## Example: Why Buffer Definition Variables Are Protected | 
|  | 58 | + | 
|  | 59 | +Consider this code: | 
|  | 60 | + | 
|  | 61 | +```python | 
|  | 62 | +let stride = M * 16 | 
|  | 63 | +let buffer_a = Buffer(data, shape=[M, N], strides=[stride, 1]) | 
|  | 64 | +buffer_a[i, j] = ... | 
|  | 65 | +``` | 
|  | 66 | + | 
|  | 67 | +- `stride` satisfies `CanInlineLetStmt` (it's an int expression with no side effects) | 
|  | 68 | +- However, `stride` is used in `buffer_a`'s `strides` field | 
|  | 69 | +- If we inline it, the buffer definition becomes `strides=[M*16, 1]` | 
|  | 70 | +- But the Buffer object's fields are not updated during simplification | 
|  | 71 | +- Later code accessing `buffer_a` would fail to find the `stride` variable | 
|  | 72 | + | 
|  | 73 | +Therefore, `stride` is added to `used_in_buffer_def_` and will **not** be inlined. | 
|  | 74 | + | 
|  | 75 | +## How Variables Are Collected | 
|  | 76 | + | 
|  | 77 | +The `CollectVarsUsedInBufferDefinition` helper traverses all `BufferLoad` and `BufferStore` nodes and collects variables used in their buffer definitions: | 
|  | 78 | + | 
|  | 79 | +```cpp | 
|  | 80 | +void VisitBuffer(const Buffer &buf) { | 
|  | 81 | +  // Collect variables that should remain defined | 
|  | 82 | +  VarUseDefAnalyzer usage(Array<Var>{}); | 
|  | 83 | +  usage(buf->data); | 
|  | 84 | +  for (const auto &dim : buf->shape) { | 
|  | 85 | +    usage(dim); | 
|  | 86 | +  } | 
|  | 87 | +  for (const auto &dim : buf->strides) { | 
|  | 88 | +    usage(dim); | 
|  | 89 | +  } | 
|  | 90 | +  usage(buf->elem_offset); | 
|  | 91 | + | 
|  | 92 | +  // Track for use in LetStmtNode mutator | 
|  | 93 | +  for (const auto &var : usage.undefined_) { | 
|  | 94 | +    used_in_buffer_def_.insert(var.get()); | 
|  | 95 | +  } | 
|  | 96 | +} | 
|  | 97 | +``` | 
|  | 98 | + | 
|  | 99 | +## Practical Example: Temporary Variable Issue | 
|  | 100 | + | 
|  | 101 | +Consider this TileLang code: | 
|  | 102 | + | 
|  | 103 | +```python | 
|  | 104 | +for i in T.Parallel(block_N): | 
|  | 105 | +    idx = bx * block_N + i | 
|  | 106 | +    tmp = T.max(A[idx], 1) | 
|  | 107 | +    B[idx] = tmp / 2 | 
|  | 108 | +    A[idx] = tmp * 2 | 
|  | 109 | +``` | 
|  | 110 | + | 
|  | 111 | +In this case: | 
|  | 112 | +- `tmp` is an integer-like temporary variable | 
|  | 113 | +- It satisfies `CanInlineLetStmt` (pure int expression) | 
|  | 114 | +- It's **not** used in any buffer definition | 
|  | 115 | +- Therefore, `tmp` **will be inlined** | 
|  | 116 | + | 
|  | 117 | +This means the IR becomes: | 
|  | 118 | + | 
|  | 119 | +```python | 
|  | 120 | +for i in T.Parallel(block_N): | 
|  | 121 | +    idx = bx * block_N + i | 
|  | 122 | +    B[idx] = T.max(A[idx], 1) / 2 | 
|  | 123 | +    A[idx] = T.max(A[idx], 1) * 2 | 
|  | 124 | +``` | 
|  | 125 | + | 
|  | 126 | +If this causes issues (e.g., `A[idx]` being read twice with different values due to the first write), it indicates a potential problem with the inlining heuristic or the code pattern. | 
|  | 127 | + | 
|  | 128 | +## Controlling Let Inlining via Pass Config | 
|  | 129 | + | 
|  | 130 | +TileLang exposes an explicit pass configuration key, `tilelang.PassConfigKey.TL_FORCE_LET_INLINE` (`"tl.force_let_inline"`), that allows users to force the eager `LetInline` pass to run before the legalization pipeline begins. When enabled, the pipeline invokes `tilelang.transform.LetInline()` at the start of `LowerAndLegalize` (see `tilelang/engine/phase.py`). This knob is useful when debugging LetStmt-related issues or when deterministic inlining behavior is desired across different environments. | 
|  | 131 | + | 
|  | 132 | +```python | 
|  | 133 | +from tilelang import transform | 
|  | 134 | +from tilelang.engine.phase import LowerAndLegalize | 
|  | 135 | + | 
|  | 136 | +with transform.PassContext( | 
|  | 137 | +    config={transform.PassConfigKey.TL_FORCE_LET_INLINE: True} | 
|  | 138 | +): | 
|  | 139 | +    lowered_mod = LowerAndLegalize(input_mod, target) | 
|  | 140 | +``` | 
|  | 141 | + | 
|  | 142 | +If the flag is left unset (the default), the eager pass is only applied when downstream transforms opt in (for example, by calling `_Simplify(..., inline_let=True)` inside Tile operators). The guard in `tilelang/engine/phase.py` ensures the eager pass is only triggered when the user explicitly requests it. | 
|  | 143 | + | 
|  | 144 | +## Summary | 
|  | 145 | + | 
|  | 146 | +The LetStmt inlining mechanism is a **conservative optimization** that: | 
|  | 147 | +1. Aggressively inlines simple, pure integer expressions to simplify the IR | 
|  | 148 | +2. Protects variables used in buffer definitions to avoid breaking buffer access | 
|  | 149 | +3. Helps reduce IR complexity and improve code generation | 
|  | 150 | +4. Can be forced through `TL_FORCE_LET_INLINE` when deterministic eager inlining is required | 
|  | 151 | + | 
|  | 152 | +Understanding when inlining happens is crucial for: | 
|  | 153 | +- Debugging compilation issues | 
|  | 154 | +- Understanding generated code | 
|  | 155 | +- Writing efficient TileLang programs | 
|  | 156 | +- Identifying potential optimization opportunities or bugs | 
|  | 157 | + | 
|  | 158 | +## Related Files | 
|  | 159 | + | 
|  | 160 | +- `src/transform/simplify.cc`: Main Simplify implementation | 
|  | 161 | +- `src/transform/frontend_legalize.cc`: Standalone LetInline pass | 
|  | 162 | +- `tilelang/engine/phase.py`: Pipeline integration for eager LetInlining | 
|  | 163 | +- `testing/python/transform/test_tilelang_transform_let_inline.py`: Regression coverage for the pass | 
0 commit comments