-
Notifications
You must be signed in to change notification settings - Fork 164
/
Copy pathmodel.py
467 lines (379 loc) · 17.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.framework import dtypes
import os, sys
import numpy as np
import math
from datetime import datetime
import time
from PIL import Image
from math import ceil
from tensorflow.python.ops import gen_nn_ops
# modules
from Utils import _variable_with_weight_decay, _variable_on_cpu, _add_loss_summaries, _activation_summary, print_hist_summery, get_hist, per_class_acc, writeImage
from Inputs import *
# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999 # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0 # Epochs after which learning rate decays.
LEARNING_RATE_DECAY_FACTOR = 0.1 # Learning rate decay factor.
INITIAL_LEARNING_RATE = 0.001 # Initial learning rate.
EVAL_BATCH_SIZE = 5
BATCH_SIZE = 5
# for CamVid
IMAGE_HEIGHT = 360
IMAGE_WIDTH = 480
IMAGE_DEPTH = 3
NUM_CLASSES = 12
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 367
NUM_EXAMPLES_PER_EPOCH_FOR_TEST = 101
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 1
TEST_ITER = NUM_EXAMPLES_PER_EPOCH_FOR_TEST / BATCH_SIZE
def msra_initializer(kl, dl):
"""
kl for kernel size, dl for filter number
"""
stddev = math.sqrt(2. / (kl**2 * dl))
return tf.truncated_normal_initializer(stddev=stddev)
def orthogonal_initializer(scale = 1.1):
''' From Lasagne and Keras. Reference: Saxe et al., http://arxiv.org/abs/1312.6120
'''
def _initializer(shape, dtype=tf.float32, partition_info=None):
flat_shape = (shape[0], np.prod(shape[1:]))
a = np.random.normal(0.0, 1.0, flat_shape)
u, _, v = np.linalg.svd(a, full_matrices=False)
# pick the one with the correct shape
q = u if u.shape == flat_shape else v
q = q.reshape(shape) #this needs to be corrected to float32
return tf.constant(scale * q[:shape[0], :shape[1]], dtype=tf.float32)
return _initializer
def loss(logits, labels):
"""
loss func without re-weighting
"""
# Calculate the average cross entropy loss across the batch.
logits = tf.reshape(logits, (-1,NUM_CLASSES))
labels = tf.reshape(labels, [-1])
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=labels, name='cross_entropy_per_example')
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
return tf.add_n(tf.get_collection('losses'), name='total_loss')
def weighted_loss(logits, labels, num_classes, head=None):
""" median-frequency re-weighting """
with tf.name_scope('loss'):
logits = tf.reshape(logits, (-1, num_classes))
epsilon = tf.constant(value=1e-10)
logits = logits + epsilon
# consturct one-hot label array
label_flat = tf.reshape(labels, (-1, 1))
# should be [batch ,num_classes]
labels = tf.reshape(tf.one_hot(label_flat, depth=num_classes), (-1, num_classes))
softmax = tf.nn.softmax(logits)
cross_entropy = -tf.reduce_sum(tf.multiply(labels * tf.log(softmax + epsilon), head), axis=[1])
cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
tf.add_to_collection('losses', cross_entropy_mean)
loss = tf.add_n(tf.get_collection('losses'), name='total_loss')
return loss
def cal_loss(logits, labels):
loss_weight = np.array([
0.2595,
0.1826,
4.5640,
0.1417,
0.9051,
0.3826,
9.6446,
1.8418,
0.6823,
6.2478,
7.3614,
1.0974]) # class 0~11
labels = tf.cast(labels, tf.int32)
# return loss(logits, labels)
return weighted_loss(logits, labels, num_classes=NUM_CLASSES, head=loss_weight)
def conv_layer_with_bn(inputT, shape, train_phase, activation=True, name=None):
in_channel = shape[2]
out_channel = shape[3]
k_size = shape[0]
with tf.variable_scope(name) as scope:
kernel = _variable_with_weight_decay('ort_weights', shape=shape, initializer=orthogonal_initializer(), wd=None)
conv = tf.nn.conv2d(inputT, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [out_channel], tf.constant_initializer(0.0))
bias = tf.nn.bias_add(conv, biases)
if activation is True:
conv_out = tf.nn.relu(batch_norm_layer(bias, train_phase, scope.name))
else:
conv_out = batch_norm_layer(bias, train_phase, scope.name)
return conv_out
def get_deconv_filter(f_shape):
"""
reference: https://github.com/MarvinTeichmann/tensorflow-fcn
"""
width = f_shape[0]
heigh = f_shape[0]
f = ceil(width/2.0)
c = (2 * f - 1 - f % 2) / (2.0 * f)
bilinear = np.zeros([f_shape[0], f_shape[1]])
for x in range(width):
for y in range(heigh):
value = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
bilinear[x, y] = value
weights = np.zeros(f_shape)
for i in range(f_shape[2]):
weights[:, :, i, i] = bilinear
init = tf.constant_initializer(value=weights,
dtype=tf.float32)
return tf.get_variable(name="up_filter", initializer=init,
shape=weights.shape)
def deconv_layer(inputT, f_shape, output_shape, stride=2, name=None):
# output_shape = [b, w, h, c]
# sess_temp = tf.InteractiveSession()
sess_temp = tf.global_variables_initializer()
strides = [1, stride, stride, 1]
with tf.variable_scope(name):
weights = get_deconv_filter(f_shape)
deconv = tf.nn.conv2d_transpose(inputT, weights, output_shape,
strides=strides, padding='SAME')
return deconv
def batch_norm_layer(inputT, is_training, scope):
return tf.cond(is_training,
lambda: tf.contrib.layers.batch_norm(inputT, is_training=True,
center=False, updates_collections=None, scope=scope+"_bn"),
lambda: tf.contrib.layers.batch_norm(inputT, is_training=False,
updates_collections=None, center=False, scope=scope+"_bn", reuse = True))
def inference(images, labels, batch_size, phase_train):
# norm1
norm1 = tf.nn.lrn(images, depth_radius=5, bias=1.0, alpha=0.0001, beta=0.75,
name='norm1')
# conv1
conv1 = conv_layer_with_bn(norm1, [7, 7, images.get_shape().as_list()[3], 64], phase_train, name="conv1")
# pool1
pool1, pool1_indices = tf.nn.max_pool_with_argmax(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME', name='pool1')
# conv2
conv2 = conv_layer_with_bn(pool1, [7, 7, 64, 64], phase_train, name="conv2")
# pool2
pool2, pool2_indices = tf.nn.max_pool_with_argmax(conv2, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME', name='pool2')
# conv3
conv3 = conv_layer_with_bn(pool2, [7, 7, 64, 64], phase_train, name="conv3")
# pool3
pool3, pool3_indices = tf.nn.max_pool_with_argmax(conv3, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME', name='pool3')
# conv4
conv4 = conv_layer_with_bn(pool3, [7, 7, 64, 64], phase_train, name="conv4")
# pool4
pool4, pool4_indices = tf.nn.max_pool_with_argmax(conv4, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME', name='pool4')
""" End of encoder """
""" start upsample """
# upsample4
# Need to change when using different dataset out_w, out_h
# upsample4 = upsample_with_pool_indices(pool4, pool4_indices, pool4.get_shape(), out_w=45, out_h=60, scale=2, name='upsample4')
upsample4 = deconv_layer(pool4, [2, 2, 64, 64], [batch_size, 45, 60, 64], 2, "up4")
# decode 4
conv_decode4 = conv_layer_with_bn(upsample4, [7, 7, 64, 64], phase_train, False, name="conv_decode4")
# upsample 3
# upsample3 = upsample_with_pool_indices(conv_decode4, pool3_indices, conv_decode4.get_shape(), scale=2, name='upsample3')
upsample3= deconv_layer(conv_decode4, [2, 2, 64, 64], [batch_size, 90, 120, 64], 2, "up3")
# decode 3
conv_decode3 = conv_layer_with_bn(upsample3, [7, 7, 64, 64], phase_train, False, name="conv_decode3")
# upsample2
# upsample2 = upsample_with_pool_indices(conv_decode3, pool2_indices, conv_decode3.get_shape(), scale=2, name='upsample2')
upsample2= deconv_layer(conv_decode3, [2, 2, 64, 64], [batch_size, 180, 240, 64], 2, "up2")
# decode 2
conv_decode2 = conv_layer_with_bn(upsample2, [7, 7, 64, 64], phase_train, False, name="conv_decode2")
# upsample1
# upsample1 = upsample_with_pool_indices(conv_decode2, pool1_indices, conv_decode2.get_shape(), scale=2, name='upsample1')
upsample1= deconv_layer(conv_decode2, [2, 2, 64, 64], [batch_size, 360, 480, 64], 2, "up1")
# decode4
conv_decode1 = conv_layer_with_bn(upsample1, [7, 7, 64, 64], phase_train, False, name="conv_decode1")
""" end of Decode """
""" Start Classify """
# output predicted class number (6)
with tf.variable_scope('conv_classifier') as scope:
kernel = _variable_with_weight_decay('weights',
shape=[1, 1, 64, NUM_CLASSES],
initializer=msra_initializer(1, 64),
wd=0.0005)
conv = tf.nn.conv2d(conv_decode1, kernel, [1, 1, 1, 1], padding='SAME')
biases = _variable_on_cpu('biases', [NUM_CLASSES], tf.constant_initializer(0.0))
conv_classifier = tf.nn.bias_add(conv, biases, name=scope.name)
logit = conv_classifier
loss = cal_loss(conv_classifier, labels)
return loss, logit
def train(total_loss, global_step):
total_sample = 274
num_batches_per_epoch = 274/1
""" fix lr """
lr = INITIAL_LEARNING_RATE
loss_averages_op = _add_loss_summaries(total_loss)
# Compute gradients.
with tf.control_dependencies([loss_averages_op]):
opt = tf.train.AdamOptimizer(lr)
grads = opt.compute_gradients(total_loss)
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
# Add histograms for trainable variables.
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var)
# Add histograms for gradients.
for grad, var in grads:
if grad is not None:
tf.summary.histogram(var.op.name + '/gradients', grad)
# Track the moving averages of all trainable variables.
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY, global_step)
variables_averages_op = variable_averages.apply(tf.trainable_variables())
with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
train_op = tf.no_op(name='train')
return train_op
def test(FLAGS):
max_steps = FLAGS.max_steps
batch_size = FLAGS.batch_size
train_dir = FLAGS.log_dir # /tmp3/first350/TensorFlow/Logs
test_dir = FLAGS.test_dir # /tmp3/first350/SegNet-Tutorial/CamVid/train.txt
test_ckpt = FLAGS.testing
image_w = FLAGS.image_w
image_h = FLAGS.image_h
image_c = FLAGS.image_c
# testing should set BATCH_SIZE = 1
batch_size = 1
image_filenames, label_filenames = get_filename_list(test_dir)
test_data_node = tf.placeholder(
tf.float32,
shape=[batch_size, image_h, image_w, image_c])
test_labels_node = tf.placeholder(tf.int64, shape=[batch_size, 360, 480, 1])
phase_train = tf.placeholder(tf.bool, name='phase_train')
loss, logits = inference(test_data_node, test_labels_node, batch_size, phase_train)
pred = tf.argmax(logits, axis=3)
# get moving avg
variable_averages = tf.train.ExponentialMovingAverage(
MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
# gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.0001)
with tf.Session() as sess:
# Load checkpoint
saver.restore(sess, test_ckpt )
images, labels = get_all_test_data(image_filenames, label_filenames)
threads = tf.train.start_queue_runners(sess=sess)
hist = np.zeros((NUM_CLASSES, NUM_CLASSES))
for image_batch, label_batch in zip(images, labels):
feed_dict = {
test_data_node: image_batch,
test_labels_node: label_batch,
phase_train: False
}
dense_prediction, im = sess.run([logits, pred], feed_dict=feed_dict)
# output_image to verify
if (FLAGS.save_image):
writeImage(im[0], 'testing_image.png')
# writeImage(im[0], 'out_image/'+str(image_filenames[count]).split('/')[-1])
hist += get_hist(dense_prediction, label_batch)
# count+=1
acc_total = np.diag(hist).sum() / hist.sum()
iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
print("acc: ", acc_total)
print("mean IU: ", np.nanmean(iu))
def training(FLAGS, is_finetune=False):
max_steps = FLAGS.max_steps
batch_size = FLAGS.batch_size
train_dir = FLAGS.log_dir # /tmp3/first350/TensorFlow/Logs
image_dir = FLAGS.image_dir # /tmp3/first350/SegNet-Tutorial/CamVid/train.txt
val_dir = FLAGS.val_dir # /tmp3/first350/SegNet-Tutorial/CamVid/val.txt
finetune_ckpt = FLAGS.finetune
image_w = FLAGS.image_w
image_h = FLAGS.image_h
image_c = FLAGS.image_c
# should be changed if your model stored by different convention
startstep = 0 if not is_finetune else int(FLAGS.finetune.split('-')[-1])
image_filenames, label_filenames = get_filename_list(image_dir)
val_image_filenames, val_label_filenames = get_filename_list(val_dir)
with tf.Graph().as_default():
train_data_node = tf.placeholder( tf.float32, shape=[batch_size, image_h, image_w, image_c])
train_labels_node = tf.placeholder(tf.int64, shape=[batch_size, image_h, image_w, 1])
phase_train = tf.placeholder(tf.bool, name='phase_train')
global_step = tf.Variable(0, trainable=False)
# For CamVid
images, labels = CamVidInputs(image_filenames, label_filenames, batch_size)
val_images, val_labels = CamVidInputs(val_image_filenames, val_label_filenames, batch_size)
# Build a Graph that computes the logits predictions from the inference model.
loss, eval_prediction = inference(train_data_node, train_labels_node, batch_size, phase_train)
# Build a Graph that trains the model with one batch of examples and updates the model parameters.
train_op = train(loss, global_step)
saver = tf.train.Saver(tf.global_variables())
summary_op = tf.summary.merge_all()
# gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.0001)
with tf.Session() as sess:
# Build an initialization operation to run below.
if (is_finetune == True):
saver.restore(sess, finetune_ckpt )
else:
init = tf.global_variables_initializer()
sess.run(init)
# Start the queue runners.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
# Summery placeholders
summary_writer = tf.summary.FileWriter(train_dir, sess.graph)
average_pl = tf.placeholder(tf.float32)
acc_pl = tf.placeholder(tf.float32)
iu_pl = tf.placeholder(tf.float32)
average_summary = tf.summary.scalar("test_average_loss", average_pl)
acc_summary = tf.summary.scalar("test_accuracy", acc_pl)
iu_summary = tf.summary.scalar("Mean_IU", iu_pl)
for step in range(startstep, startstep + max_steps):
image_batch ,label_batch = sess.run([images, labels])
# since we still use mini-batches in validation, still set bn-layer phase_train = True
feed_dict = {
train_data_node: image_batch,
train_labels_node: label_batch,
phase_train: True
}
start_time = time.time()
_, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)
duration = time.time() - start_time
assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
if step % 10 == 0:
num_examples_per_step = batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)
format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (datetime.now(), step, loss_value,
examples_per_sec, sec_per_batch))
# eval current training batch pre-class accuracy
pred = sess.run(eval_prediction, feed_dict=feed_dict)
per_class_acc(pred, label_batch)
if step % 100 == 0:
print("start validating.....")
total_val_loss = 0.0
hist = np.zeros((NUM_CLASSES, NUM_CLASSES))
for test_step in range(int(TEST_ITER)):
val_images_batch, val_labels_batch = sess.run([val_images, val_labels])
_val_loss, _val_pred = sess.run([loss, eval_prediction], feed_dict={
train_data_node: val_images_batch,
train_labels_node: val_labels_batch,
phase_train: True
})
total_val_loss += _val_loss
hist += get_hist(_val_pred, val_labels_batch)
print("val loss: ", total_val_loss / TEST_ITER)
acc_total = np.diag(hist).sum() / hist.sum()
iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
test_summary_str = sess.run(average_summary, feed_dict={average_pl: total_val_loss / TEST_ITER})
acc_summary_str = sess.run(acc_summary, feed_dict={acc_pl: acc_total})
iu_summary_str = sess.run(iu_summary, feed_dict={iu_pl: np.nanmean(iu)})
print_hist_summery(hist)
print(" end validating.... ")
summary_str = sess.run(summary_op, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)
summary_writer.add_summary(test_summary_str, step)
summary_writer.add_summary(acc_summary_str, step)
summary_writer.add_summary(iu_summary_str, step)
# Save the model checkpoint periodically.
if step % 1000 == 0 or (step + 1) == max_steps:
checkpoint_path = os.path.join(train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)
coord.request_stop()
coord.join(threads)