-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
executable file
·157 lines (126 loc) · 4.45 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gin
import click
import argparse
import logging
import pickle
import os
import sys
import numpy as np
import model
import gen
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils import data
from torch import optim
from env import KeyTask
from collections import Counter
from pathlib import Path
from tqdm import trange, tqdm
logging.basicConfig(
format='[%(levelname)s:%(asctime)s] %(message)s',
datefmt='%m%d@%H%M',
handlers=[logging.FileHandler('log.txt','a'), logging.StreamHandler(sys.stdout)],
level=logging.INFO)
logging.getLogger('skimage').setLevel(logging.CRITICAL)
logging.getLogger('model').setLevel(logging.DEBUG)
L = logging.getLogger(__name__)
class GroupExt(click.Group):
def add_command(self, cmd: click.Command, name=None):
click.Group.add_command(self, cmd, name=name)
for param in self.params:
cmd.params.append(param)
to_device = lambda ctx, param, val: torch.device(val)
@click.command(cls=GroupExt)
@click.option('--episodes', default=512, type=int)
@click.option('--device', default='cuda', callback=to_device)
@click.option('--seed', default=42, type=int)
@click.option(
'--task',
default=lambda: os.environ.get('TASK', 'keytask'),
type=click.Choice(['keytask']))
def common():
pass
@click.argument('load', default='model_default.pt', type=click.Path(exists=True))
@click.option('--proto_samples', default=1024, type=int)
@common.command()
def plan(device, load, proto_samples, episodes, seed, task):
Env = dict(keytask=KeyTask)[task]
env = Env(seed=seed, max_steps=100)
learner = model.Learner(device, action_dim=len(env.action_space))
try:
L.info('Loading state dict from %s', load)
learner.load_state_dict(torch.load(load, map_location=device)['model'])
except:
L.warning('Load state dict failed. Trying to load entire object...')
learner = torch.load(load, map_location=device)
replay = gen.gen_env(env, n_episodes=episodes)
tloader = gen.Transitions(replay)
prototype_states = [
tloader[idx][0] for idx in
np.random.default_rng(seed).choice(np.arange(len(tloader)), proto_samples)
]
learner.eval()
planner = model.ValueIteration(learner, prototype_states)
def predict(planner, env):
planner.plan(goal_state=env.render_goal_state())
done = False
acs = []
obs = env.render()
while not done:
action = planner.pi(obs, env.valid_actions).item()
obs, reward, done, win = env.step(action)
acs.append(action)
return acs, win
wins = 0
act_counts = Counter()
with trange(1, episodes+1) as t:
for k in t:
env.reset()
acts, win = predict(planner, env)
wins += win
act_counts.update(acts)
lens = sum(act_counts.values())
t.set_postfix(wins=wins, acts=act_counts, L=len(acts), La=lens/k)
L.info('Done evaluating planning. Wins: %s (avg %s)', wins, lens/k)
@click.argument('save', default='model_default.pt', type=click.Path())
@click.option('--epochs', default=100, type=int)
@common.command()
def train(device, save, epochs, episodes, seed, task):
Env = dict(keytask=KeyTask)[task]
env = Env(seed=seed, max_steps=100)
replay = gen.gen_env(env, n_episodes=episodes)
tloader = gen.Transitions(replay)
loader = data.DataLoader(tloader, batch_size=512, shuffle=True)
learner = model.Learner(device, action_dim=len(env.action_space))
optimizer = optim.Adam(learner.parameters(), lr=0.001)
L.info('Starting training for %s epochs.', epochs)
L.info('Best model will be saved to %s.', save)
with trange(1, epochs+1) as t:
best_loss = 1e9
for epoch in t:
loss_ = 0
for step, batch in enumerate(tqdm(loader)):
obs, action, reward, next_obs = batch = [x.to(device) for x in batch]
optimizer.zero_grad()
loss = learner.loss(*batch)
loss.backward()
loss_ += loss.item()
optimizer.step()
avg_loss = loss_ / len(loader.dataset)
if avg_loss < best_loss:
best_loss = avg_loss
torch.save(dict(
model=learner.state_dict(),
config=gin.operative_config_str()), save)
t.set_postfix(best=best_loss, avg=avg_loss)
L.info('Done training. Best loss: %s', best_loss)
@click.command(
cls=click.CommandCollection, sources=[common])
@click.argument('config', type=click.Path(exists=True, dir_okay=False))
@click.pass_context
def cli(ctx: click.Context, config):
gin.parse_config_file(config)
L.info('Called with args: %s', sys.argv)
if __name__ == '__main__':
cli()