-
Notifications
You must be signed in to change notification settings - Fork 200
/
EWD998_opts.R
127 lines (119 loc) · 4.51 KB
/
EWD998_opts.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
library(ggplot2)
library(dplyr)
data <- read.csv(header=TRUE, sep = "#", file = file.choose())
summary = summarise(group_by(data,Variant, Node),
mean_Length = mean(Length),
sd_Length = sd(Length),
mean_IP = mean(InitiateProbe),
sd_IP = sd(InitiateProbe),
mean_PT = mean(PassToken),
sd_PT = sd(PassToken),
mean_SM = mean(SendMsg),
sd_SM = sd(SendMsg),
mean_RM = mean(RecvMsg),
sd_MR = sd(RecvMsg),
mean_DA = mean(Deactivate),
sd_DA = sd(Deactivate),
mean_T = mean(T),
sd_T = sd(T),
mean_T2TD = mean(T2TD),
sd_T2TD = sd(T2TD)
)
Nodes <- unique(summary$Node)
####
#### T2TD
####
for (n in Nodes) {
print(ggplot(filter(summary, Node == n),
aes(x = reorder(Variant, mean_T2TD), y = mean_T2TD, fill = Variant)) +
geom_bar(stat = "identity") +
geom_errorbar(aes(ymin=mean_T2TD-sd_T2TD, ymax=mean_T2TD+sd_T2TD), width=.2,
position=position_dodge(.9)) +
scale_x_discrete(guide = guide_axis(n.dodge=3))+
theme_minimal() +
labs(
x = "Spec variant",
y = "Average length while terminated /\\ ~terminationDetected holds",
title = paste(
"Number of Nodes: ", n, "Traces:", nrow(filter(data, Node == n))
)
))
}
####
#### InitiateProbe actions
####
for (n in Nodes) {
print(ggplot(filter(summary, Node == n),
aes(x = reorder(Variant, mean_IP), y = mean_IP, fill = Variant)) +
geom_bar(stat = "identity") +
geom_errorbar(aes(ymin=mean_IP-sd_IP, ymax=mean_IP+sd_IP), width=.2,
position=position_dodge(.9)) +
scale_x_discrete(guide = guide_axis(n.dodge=3))+
theme_minimal() +
labs(
x = "Spec variant",
y = "Average number of InitiateProbe actions",
title = paste(
"Number of Nodes: ", n, "Traces:", nrow(filter(data, Node == n))
)
))
}
####
#### Length & T
####
for (n in Nodes) {
print(ggplot(filter(summary, Node == n),
aes(x = reorder(Variant, mean_Length), y = mean_Length, fill = Variant)) +
geom_bar(stat = "identity") +
geom_errorbar(aes(ymin=mean_Length-sd_Length, ymax=mean_Length+sd_Length), width=.2,
position=position_dodge(.9)) +
scale_x_discrete(guide = guide_axis(n.dodge=3))+
theme_minimal() +
labs(
x = "Spec variant",
y = "Average length of behaviors",
title = paste(
"Number of Nodes: ", n, "Traces:", nrow(filter(data, Node == n))
)
))
}
########
######## Occurrences of actions
########
for (n in Nodes) {
print(ggplot(filter(summary, Node == n)) +
geom_point(aes(x=reorder(Variant, mean_PT), y = mean_PT,size=5,colour = "PassToken",shape = "PassToken")) +
geom_point(aes(x=reorder(Variant, mean_IP),y=mean_IP,size=5,colour = "InitiateProbe",shape = "InitiateProbe")) +
# geom_point(aes(x=Variant,y=mean_IP,colour = "InitiateProbe",shape = "InitiateProbe")) +
geom_point(aes(x=reorder(Variant, mean_SM),y=mean_SM,size=5,colour = "SendMsg",shape = "SendMsg")) +
geom_point(aes(x=reorder(Variant, mean_RM),y=mean_RM,size=5,colour = "RecvMsg",shape = "RecvMsg")) +
geom_point(aes(x=reorder(Variant, mean_DA),y=mean_DA,size=5,colour = "Deactivate",shape = "Deactivate")) +
## x-axis labels should not overlap.
scale_x_discrete(guide = guide_axis(n.dodge=3))+
#scale_x_discrete(guide = guide_axis(check.overlap = TRUE))+
#coord_flip() +
theme_minimal() +
#theme(legend.position = "none") +
labs(
x = "Spec variant",
y = "Average number of occurrences in behaviors",
title = paste(
"Number of Nodes: ", n, " Traces:", nrow(filter(data, Node == n))
)
))
}
########
######## Correlations
########
##install.packages("ggcorrplot")
library("ggcorrplot")
my_data <- filter(summary, Node == 113)[, c("mean_Length", "mean_SM", "mean_RM", "mean_IP", "mean_PT", "mean_DA", "mean_T")]
p.mat <- cor_pmat(my_data)
## Check for correlation in 'data'
## 'spearman' (3) correlation because data has no normal distribution
## (see previous plots).
corr <- round(cor(my_data), 3)
ggcorrplot(corr, p.mat = cor_pmat(my_data),
hc.order = TRUE, type = "lower",
color = c("#FC4E07", "white", "#00AFBB"),
outline.col = "white", lab = TRUE)