Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 <= i <= N) in this array:
<li>The number at the i<sub>th</sub> position is divisible by <b>i</b>.</li>
<li><b>i</b> is divisible by the number at the i<sub>th</sub> position.</li>
Now given N, how many beautiful arrangements can you construct?
Example 1:
Input: 2 Output: 2 Explanation: The first beautiful arrangement is [1, 2]: Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1). Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2). The second beautiful arrangement is [2, 1]: Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1). Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.
Note:
<li><b>N</b> is a positive integer and will not exceed 15.</li>