forked from AmpX-AI/fsql
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_dask.py
45 lines (37 loc) · 1.94 KB
/
test_dask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import logging
import pandas as pd
from pandas.testing import assert_frame_equal
from fsql.api import read_partitioned_table
from fsql.column_parser import AutoParser
from fsql.deser_dask import DaskReader
from fsql.query import Q_TRUE
logging.basicConfig(level=logging.DEBUG, force=True)
logging.getLogger("botocore").setLevel(level=logging.ERROR)
def test_dask(tmp_path):
"""Here we demonstrate a drop-in replacement of Pandas reader with a Dask reader. The underlying logic
of Pandas reader (the default one) is to merge all files into a single dataframe, which may, at times,
be unscalable or undesirable. Instead, Dask reader converts every single file into one partition of the
Dataframe, in a lazy way. Therefore, `read_partitioned_table` reads just a single file to derive the
metadata, and returns to you an object which will initiate the reading once you trigger some `compute`.
"""
df1 = pd.DataFrame({"a": [1, 2]})
df2 = pd.DataFrame({"a": [3, 4]})
df3 = pd.DataFrame({"a": [5, 6]})
pr1 = tmp_path / "c1=1"
pr2 = tmp_path / "c1=2"
pr3 = tmp_path / "c1=3"
pr1.mkdir(parents=True)
pr2.mkdir(parents=True)
pr3.mkdir(parents=True)
df1.to_csv(pr1 / "f1.csv", index=False)
df2.to_csv(pr2 / "f2.csv", index=False)
df3.to_csv(pr3 / "f3.csv", index=False)
reader = DaskReader()
parser = AutoParser.from_str("c1=[1,2]")
result = read_partitioned_table(f"file://{tmp_path}/", Q_TRUE, parser, reader).compute()
expect = pd.concat([df1.assign(c1="1"), df2.assign(c1="2")])
assert_frame_equal(expect, result)
# There are times when even this behaviour is not a good idea -- the first file may not give correct
# information for metadata derivation, you may want to do some other operation on the list of delayed
# tasks instead of concatenating to a dataframe right away, etc... In that case, you best subclass
# the DaskReader on your own, or just use it as a starting point.