-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmod1.py
122 lines (105 loc) · 3.87 KB
/
mod1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import sys
sys.path.insert(1,'/home/ertel/bin/xlutils-2.0.0')
import numpy as np
from xlrd import open_workbook
from xlutils.copy import copy
import matplotlib.pyplot as plt
def ptsToGrds(input_xls,pmax,pmin,diff):
#Create an object that can read the inputfile
rb = open_workbook(input_xls)
rs = rb.sheet_by_index(0)
#Fill a list of the exam points
punkte_lsf = []
for row in range(rs.nrows-1)[2:] :
punkte_lsf.append(rs.cell(row,11).value)
punkte=[]
for i in range(len(punkte_lsf)):
if punkte_lsf[i] == '': punkte_lsf[i]='5U'
else:
punkte_lsf[i]=float(punkte_lsf[i])
punkte.append(punkte_lsf[i])
#Convert the points into floats or 5U
#Map the points into grades
noten_lsf=[]
noten=[]
stud_ges = 0
durchgefallen = 0
intercept = 1.0 + 3.0/diff*pmax
for i in range(len(punkte_lsf)):
if type(punkte_lsf[i])==float:
temp=-3.0/diff*punkte_lsf[i] + intercept
temp=np.floor(temp*10)/10
if temp<1.0: temp=1.0
if temp>5.0:
temp=5.0
durchgefallen=durchgefallen+1
stud_ges = stud_ges+1
noten.append(round(temp, 1))
noten_lsf.append(round(temp*100,-1))
else: noten_lsf.append(punkte_lsf[i])
punkte=np.array(punkte)
noten=np.array(noten)
mean = str(np.round(np.mean(noten),1))
#failure = noten > 4.0
failure_rate = str(int(np.round(np.mean(noten>4)*100)))
#Create a new xls object; a copy of the old one
#and write the grades
wb = copy(rb)
ws = wb.get_sheet(0)
for row in range(rs.nrows-1)[2:]:
ws.write(row,11,noten_lsf[row-2])
#Create the name of the output file
output_xls = list(input_xls)
del output_xls[-4:]
output_xls += '_noten.xls'
output_xls = ''.join(output_xls)
#Save the xls object in an xls file(a real file)
wb.save(output_xls)
#Creating the new txt file
#Create an object that can read the new xls file
rb = open_workbook(output_xls)
rs = rb.sheet_by_index(0)
#Create the name of the output text file
output_txt = list(input_xls)
del output_txt[-4:]
output_txt += '_noten.txt'
output_txt = ''.join(output_txt)
#Fill the resulting(output) xls
f = open(output_txt, 'w')
string = (str(stud_ges)+' Studenten (ohne 5U),'
+' 4.0 bei ' +str(pmin) +' Punkte,'
+' 1.0 bei ' +str(pmax) +' Punkte,'
+' Schnitt ' +mean + ','
+' Durchgefallen ' +str(durchgefallen) +' (' +failure_rate+'%)'
+'\n')
f.write(string)
for row in range(rs.nrows-1)[2:]:
line=[]
line.append(rs.cell(row,3).value)#D
line.append('{0:15}'.format(unicode(rs.cell(row,5).value).encode("utf-8")))#F
line.append('{0:15}'.format(unicode(rs.cell(row,6).value).encode("utf-8")))#G
line.append(rs.cell(row,7).value)#H
line.append(rs.cell(row,8).value)#I
line.append(rs.cell(row,15).value)#P
line.append(rs.cell(row,13).value)#N
line.append(rs.cell(row,11).value)#L
line.append('\n')
string = ', '.join([str(i) for i in line])
f.write(string)
return punkte, noten, stud_ges, mean, failure_rate
def hist(ifile, punkte, noten, mean, failure, max_pts, pmax, pmin, bins):
plt.figure(ifile)
# Plot the histograms
plt.subplot(2,1,1)
plt.hist(noten, bins, range=[1,5])
plt.axvline(4, color='r', linestyle='--', linewidth=3)
plt.xlabel('Noten')
plt.ylabel('Studentenzahl')
plt.title('Durchschnittsnote: ' + str(mean) + ', '
+ 'Durchfallquote: ' + failure + '%')
plt.subplot(2,1,2)
plt.hist(punkte, bins, range=[0,max_pts])
plt.xlabel('Punkte')
plt.ylabel('Studentenzahl')
plt.axvline(pmin, color='r', linestyle='--', linewidth=3)
plt.axvline(pmax, color='r', linestyle='--', linewidth=3)