-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_amazon_large.py
240 lines (194 loc) · 8.57 KB
/
train_amazon_large.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""Script version to run in the cloud."""
import datetime
import numpy as np
import os
import pandas as pd
import pickle
import random
from sklearn.metrics import classification_report
import tensorflow as tf
from transformers import BertTokenizer, TFBertForSequenceClassification
MODEL_NAME = "amazon_finetune_LARGE"
BATCH_SIZE = 16
EPOCHS = 4
MAX_LENGTH = 320
if __name__ == "__main__":
# Code for helping save models locally after training:
# Directory where models will be stored:
MODEL_DIR = os.path.join(os.path.expanduser("~"), "models")
# Make the directories for storing results if they don't exist yet:
if not os.path.exists(MODEL_DIR):
os.mkdir(MODEL_DIR)
def local_save_dir(*subdir: str, model_name: str = "test_model"):
"""Create timestamped directory local for storing checkpoints or models.
Args:
subdir: optional subdirectories of the main model directory
(e.g. `checkpoints`, `final_model`, etc.)
model_name: main name for directory specifying the model being saved.
"""
model_dir = f"{MODEL_DIR}/{model_name}"
if not os.path.exists(model_dir):
os.mkdir(model_dir)
for s in subdir:
model_dir = f"{model_dir}/{s}"
if not os.path.exists(model_dir):
os.mkdir(model_dir)
now = datetime.datetime.now()
now_str = now.strftime("%Y_%m_%d__%H_%M_%S")
dir_path = f"{model_dir}/{now_str}"
os.mkdir(dir_path)
print(f"Created dir: {dir_path}")
return dir_path
# Using the datasets created in a separate notebook.
# Not saved to Github as files too large:
train_fp = os.path.join(os.getcwd(), "data", "amazon", "train_LARGE.csv")
test_fp = os.path.join(os.getcwd(), "data", "amazon", "test_LARGE.csv")
val_fp = os.path.join(os.getcwd(), "data", "amazon", "val_LARGE.csv")
def shuffle(df: pd.DataFrame):
"Make sure data is shuffled (deterministically)."
ix = list(df.index)
random.seed(42)
random.shuffle(ix)
return df.loc[ix].reset_index(drop=True)
amazon_train = shuffle(pd.read_csv(train_fp, encoding="latin1"))
amazon_test = shuffle(pd.read_csv(test_fp, encoding="latin1"))
amazon_val = shuffle(pd.read_csv(val_fp, encoding="latin1"))
x_train = amazon_train["reviewText"]
y_train = amazon_train["label"]
x_val = amazon_val["reviewText"]
y_val = amazon_val["label"]
x_test = amazon_test["reviewText"]
y_test = amazon_test["label"]
print(f"Shape x_train: {x_train.shape}")
print(f"Shape x_val: {x_val.shape}")
print(f"Shape x_test: {x_test.shape}")
print(f"Shape y_train: {y_train.shape}")
print(f"Shape y_val: {y_val.shape}")
print(f"Shape y_test: {y_test.shape}")
# Construct the test dataset for the transfer learning piece:
def get_google_drive_download_url(raw_url: str):
return "https://drive.google.com/uc?id=" + raw_url.split("/")[-2]
yelp_url = "https://drive.google.com/file/d/1-3Czl0HdsMiVnnTQ4ckoAL0mcEDZGpsP/view?usp=sharing"
yelp_test = pd.read_csv(get_google_drive_download_url(yelp_url), encoding="utf-8")
x_yelp_test = yelp_test["text"]
y_yelp_test = yelp_test["label"]
print(f"Shape x_yelp_test: {x_yelp_test.shape}")
print(f"Shape x_yelp_test: {y_yelp_test.shape}")
# Using BERT base uncased tokenizer as per the paper:
print("Tokenizing ...")
bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
train_encodings = bert_tokenizer(
list(x_train.values),
max_length=MAX_LENGTH,
truncation=True,
padding='max_length',
return_tensors='tf'
)
valid_encodings = bert_tokenizer(
list(x_val.values),
max_length=MAX_LENGTH,
truncation=True,
padding='max_length',
return_tensors='tf'
)
test_encodings = bert_tokenizer(
list(x_test.values),
max_length=MAX_LENGTH,
truncation=True,
padding='max_length',
return_tensors='tf'
)
yelp_test_encodings = bert_tokenizer(
list(x_yelp_test.values),
max_length=MAX_LENGTH,
truncation=True,
padding='max_length',
return_tensors='tf'
)
print("Training ...")
def amazon_finetune():
"""Create a BERT model with parameters specified in the Bilal paper:
https://link.springer.com/article/10.1007/s10660-022-09560-w/tables/2
- model: TFBertForSequenceClassification
- learning rate: 2e-5
- epsilon: 1e-8
"""
# Using the TFBertForSequenceClassification as specified in the paper:
bert_model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
# Don't freeze any layers:
untrainable = []
trainable = [w.name for w in bert_model.weights]
for w in bert_model.weights:
if w.name in untrainable:
w._trainable = False
elif w.name in trainable:
w._trainable = True
# Compile the model:
bert_model.compile(
optimizer = tf.keras.optimizers.Adam(learning_rate=2e-5,epsilon=1e-08),
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics = [tf.keras.metrics.SparseCategoricalAccuracy("accuracy")]
)
return bert_model
model = amazon_finetune()
print(model.summary())
# Create directory for storing checkpoints after each epoch:
checkpoint_dir = local_save_dir("checkpoints", model_name = MODEL_NAME)
checkpoint_path = checkpoint_dir + "/cp-{epoch:04d}.ckpt"
# Create a callback that saves the model's weights:
cp_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_path,
save_weights_only=True,
verbose=1)
# Fit the model saving weights every epoch:
history = model.fit(
[train_encodings.input_ids, train_encodings.token_type_ids, train_encodings.attention_mask],
y_train.values,
validation_data=(
[valid_encodings.input_ids, valid_encodings.token_type_ids, valid_encodings.attention_mask],
y_val.values
),
batch_size=BATCH_SIZE,
epochs=EPOCHS,
callbacks=[cp_callback]
)
print("Saving model, scores, and predictions ...")
# Save the entire model to GDrive:
model_dir = local_save_dir("full_model", model_name = MODEL_NAME)
model.save(model_dir)
# Save scores on the test set:
for encodings, y_true, label in [
(test_encodings, y_test, "amazon_test"),
(yelp_test_encodings, y_yelp_test, "yelp_test")
]:
test_score = model.evaluate([encodings.input_ids, encodings.token_type_ids, encodings.attention_mask], y_true)
print(f"{label} loss:", test_score[0])
print(f"{label} accuracy:", test_score[1])
score_fp = os.path.join(model_dir, f"{label}_score.txt")
with open(score_fp, "w") as f:
f.write(f"{label} loss = {test_score[0]}\n")
f.write(f"{label} accuracy = {test_score[1]}\n")
# Save predictions and classification_report:
predictions = model.predict([encodings.input_ids, encodings.token_type_ids, encodings.attention_mask])
preds_fp = os.path.join(model_dir, f"{label}_predictions.csv")
pred_df = pd.DataFrame(predictions.to_tuple()[0], columns=["pred_prob_0", "pred_prob_1"])
pred_df["yhat"] = pred_df[["pred_prob_0", "pred_prob_1"]].values.argmax(1)
pred_df["y"] = y_true
pred_df["category"] = np.where((pred_df["yhat"] == 1) & (pred_df["y"] == 1), "tp", "None")
pred_df["category"] = np.where((pred_df["yhat"] == 0) & (pred_df["y"] == 0), "tn", pred_df["category"])
pred_df["category"] = np.where((pred_df["yhat"] == 1) & (pred_df["y"] == 0), "fp", pred_df["category"])
pred_df["category"] = np.where((pred_df["yhat"] == 0) & (pred_df["y"] == 1), "fn", pred_df["category"])
pred_df.to_csv(preds_fp, encoding="utf-8", index=False)
report = classification_report(y_true, pred_df["yhat"])
report_fp = os.path.join(model_dir, f"{label}_classification_report.txt")
with open(report_fp, "w") as f:
for line in report.split("\n"):
f.write(f"{line}\n")
print(f"{MODEL_NAME} - {label} set results")
print(report)
print("Saving history ...")
# Save the history file:
hist_dir = local_save_dir("history", model_name = MODEL_NAME)
with open(os.path.join(hist_dir, "hist_dict"), "wb") as f:
pickle.dump(history.history, f)
print("Finished!")