-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathmog-background-subtraction.py
302 lines (221 loc) · 9.17 KB
/
mog-background-subtraction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#####################################################################
# Example : perform MoG based foreground/background subtraction from a video
# file specified on the command line (e.g. python FILE.py video_file) or from
# an attached web camera
# Author : Toby Breckon, [email protected]
# Copyright (c) 2015-25 Toby Breckon, Engineering & Computer Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
#####################################################################
import cv2
import argparse
import sys
import numpy as np
#####################################################################
# concatenate two RGB/grayscale images horizontally (left to right)
# handling differing channel numbers or image heights in the input
def h_concat(img1, img2):
# get size and channels for both images
height1 = img1.shape[0]
# width1 = img1.shape[1]
if (len(img1.shape) == 2):
channels1 = 1
else:
channels1 = img1.shape[2]
height2 = img2.shape[0]
width2 = img2.shape[1]
if (len(img2.shape) == 2):
channels2 = 1
else:
channels2 = img2.shape[2]
# make all images 3 channel, or assume all same channel
if ((channels1 > channels2) and (channels1 == 3)):
out2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2BGR)
out1 = img1
elif ((channels2 > channels1) and (channels2 == 3)):
out1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2BGR)
out2 = img2
else: # both must be equal
out1 = img1
out2 = img2
# height of first image is master height, width remains unchanged
if (height1 != height2):
out2 = cv2.resize(out2, (height1, width2))
return np.hstack((out1, out2))
#####################################################################
# concatenate two RGB/grayscale images vertically (top to bottom)
# handling differing channel numbers or image heights in the input
def v_concat(img1, img2):
# get size and channels for both images
# height1 = img1.shape[0]
width1 = img1.shape[1]
if (len(img1.shape) == 2):
channels1 = 1
else:
channels1 = img1.shape[2]
height2 = img2.shape[0]
width2 = img2.shape[1]
if (len(img2.shape) == 2):
channels2 = 1
else:
channels2 = img2.shape[2]
# make all images 3 channel, or assume all same channel
if ((channels1 > channels2) and (channels1 == 3)):
out2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2BGR)
out1 = img1
elif ((channels2 > channels1) and (channels2 == 3)):
out1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2BGR)
out2 = img2
else: # both must be equal
out1 = img1
out2 = img2
# width of first image is master height, height remains unchanged
if (width1 != width2):
out2 = cv2.resize(out2, (height2, width1))
return np.vstack((out1, out2))
#####################################################################
keep_processing = True
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
"-s",
"--set_resolution",
type=int,
nargs=2,
help='override default camera resolution as H W')
parser.add_argument(
"-fs",
"--fullscreen",
action='store_true',
help="run in full screen mode")
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
#####################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# check versions to work around this bug in OpenCV 3.1
# https://github.com/opencv/opencv/issues/6055
(major, minor, _) = cv2.__version__.split(".")
if ((major == '3') and (minor == '1')):
cv2.ocl.setUseOpenCL(False)
# define display window name
window_name = "Live Camera Input" # window name
window_nameBG = "Background Model" # window name
window_nameFG = "Foreground Objects" # window name
window_nameFGP = "Foreground Probabiity" # window name
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_nameBG, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_nameFG, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_nameFGP, cv2.WINDOW_NORMAL)
# override default camera resolution
if (args.set_resolution is not None):
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, args.set_resolution[1])
cap.set(cv2.CAP_PROP_FRAME_WIDTH, args.set_resolution[0])
# create GMM background subtraction object
# (using default parameters which are suitable for quick lecture demos
# - see manual for suitable choice of values to use in anger)
mog = cv2.createBackgroundSubtractorMOG2(
history=2000, varThreshold=16, detectShadows=True)
print("\nPress <space> to reset MoG model ...\n")
while (keep_processing):
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# add current frame to background model and retrieve current foreground
# objects (use learningRate parameter for tuning, see manual )
fgmask = mog.apply(frame)
# threshold and clean it up using erosion/dilation w/ elliptic mask
fgthres = cv2.threshold(fgmask.copy(), 200, 255, cv2.THRESH_BINARY)[1]
fgeroded = cv2.erode(
fgthres, kernel=cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, (3, 3)), iterations=3)
fgdilated = cv2.dilate(
fgeroded, kernel=cv2.getStructuringElement(
cv2.MORPH_ELLIPSE, (3, 3)), iterations=3)
# get current background image (representative of current GMM model)
bgmodel = mog.getBackgroundImage()
# display images - input, background and original
if (args.fullscreen):
window_name = "[ Live | BG | Pr(FG) | FG ]"
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.imshow(window_name, v_concat(
h_concat(frame, bgmodel),
h_concat(fgmask, fgeroded)
))
cv2.setWindowProperty(window_name, cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN & args.fullscreen)
else:
cv2.imshow(window_name, frame)
cv2.imshow(window_nameFG, fgeroded)
cv2.imshow(window_nameFGP, fgmask)
cv2.imshow(window_nameBG, bgmodel)
# start the event loop - essential
# cv2.waitKey() is a keyboard binding function (argument is the time in
# ms.) It waits for specified milliseconds for any keyboard event.
# If you press any key in that time, the program continues.
# If 0 is passed, it waits indefinitely for a key stroke.
# (bitwise and with 0xFF to extract least significant byte of
# multi-byte response) here we use a wait time in ms. that takes
# account of processing time already used in the loop
# wait 40ms (i.e. 1000ms / 25 fps = 40 ms)
key = cv2.waitKey(40) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit, "f" for fullscreen
# or reset MoG model when space is pressed
if (key == ord('x')):
keep_processing = False
elif (key == ord(' ')):
print("\nResetting MoG background model ...\n")
mog = cv2.createBackgroundSubtractorMOG2(
history=2000, varThreshold=16, detectShadows=True)
elif (key == ord('f')):
args.fullscreen = not (args.fullscreen)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
#####################################################################