forked from lipiji/vae-salience
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdates.py
102 lines (87 loc) · 3.85 KB
/
updates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#pylint: skip-file
#https://github.com/Lasagne/Lasagne/blob/master/lasagne/updates.py
import numpy as np
import theano
import theano.tensor as T
'''
def clip_norm(g, c, n):
if c > 0:
g = K.switch(n >= c, g * c / n, g)
return g
def clip(x, min_value, max_value):
if max_value < min_value:
max_value = min_value
return T.clip(x, min_value, max_value)
'''
def sgd(params, gparams, learning_rate = 0.1):
updates = []
for p, g in zip(params, gparams):
updates.append((p, p - learning_rate * g))
return updates
def momentum(params, gparams, learning_rate = 0.1, momentum = 0.9):
updates = []
for p, g in zip(params, gparams):
v = p.get_value(borrow = True)
velocity = theano.shared(np.zeros(v.shape, dtype = v.dtype), broadcastable = p.broadcastable)
x = momentum * velocity - learning_rate * g
updates.append((velocity, x))
updates.append((p, p + x))
return updates
def nesterov_momentum(params, gparams, learning_rate = 0.1, momentum = 0.9):
updates = []
for p, g in zip(params, gparams):
v = p.get_value(borrow = True)
velocity = theano.shared(np.zeros(v.shape, dtype = v.dtype), broadcastable = p.broadcastable)
x = momentum * velocity - learning_rate * g
updates.append((velocity, x))
inc = momentum * x - learning_rate * g
updates.append((p, p + inc))
return updates
def rmsprop(params, gparams, learning_rate = 0.001, rho = 0.9, epsilon = 1e-6):
updates = []
for p, g in zip(params, gparams):
v = p.get_value(borrow = True)
acc = theano.shared(np.zeros(v.shape, dtype = v.dtype), broadcastable = p.broadcastable)
acc_new = rho * acc + (1 - rho) * g ** 2
updates.append((acc, acc_new))
updates.append((p, p - learning_rate * g / T.sqrt(acc_new + epsilon)))
return updates
def adagrad(params, gparams, learning_rate = 0.01, epsilon = 1e-6):
updates = []
for p, g in zip(params, gparams):
v = p.get_value(borrow = True)
acc = theano.shared(np.zeros(v.shape, dtype = v.dtype), broadcastable = p.broadcastable)
acc_new = acc + g ** 2
updates.append((acc, acc_new))
updates.append((p, p - learning_rate * g / T.sqrt(acc_new + epsilon)))
return updates
def adadelta(params, gparams, learning_rate = 1.0, rho = 0.95, epsilon = 1e-6):
updates = []
for p, g in zip(params, gparams):
v = p.get_value(borrow = True)
acc = theano.shared(np.zeros(v.shape, dtype = v.dtype), broadcastable = p.broadcastable)
delta_acc = theano.shared(np.zeros(v.shape, dtype = v.dtype), broadcastable = p.broadcastable)
acc_new = rho * acc + (1 - rho) * g ** 2
updates.append((acc, acc_new))
update = (g * T.sqrt(delta_acc + epsilon) / T.sqrt(acc_new + epsilon))
updates.append((p, p - learning_rate * update))
delta_acc_new = rho * delta_acc + (1 - rho) * update ** 2
updates.append((delta_acc, delta_acc_new))
return updates
def adam(params, gparams, learning_rate = 0.001, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8):
updates = []
t_pre = theano.shared(np.asarray(.0, dtype=theano.config.floatX))
t = t_pre + 1
a_t = learning_rate * T.sqrt(1 - beta2 ** t) / (1 - beta1 ** t)
for p, g in zip(params, gparams):
v = p.get_value(borrow = True)
m_pre = theano.shared(np.zeros(v.shape, dtype = v.dtype), broadcastable = p.broadcastable)
v_pre = theano.shared(np.zeros(v.shape, dtype = v.dtype), broadcastable = p.broadcastable)
m_t = beta1 * m_pre + (1 - beta1) * g
v_t = beta2 * v_pre + (1 - beta2) * g ** 2
step = a_t * m_t / (T.sqrt(v_t) + epsilon)
updates.append((m_pre, m_t))
updates.append((v_pre, v_t))
updates.append((p, p - step))
updates.append((t_pre, t))
return updates