forked from lipiji/vae-salience
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_pg.py
63 lines (49 loc) · 1.82 KB
/
utils_pg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#pylint: skip-file
import numpy as np
import theano
import theano.tensor as T
import cPickle as pickle
def floatX(X):
return np.asarray(X, dtype=theano.config.floatX)
def init_normal_weight(shape, scale=0.01):
return np.random.normal(loc=0.0, scale=scale, size=shape)
def init_uniform_weight(shape, scale=0.1):
return np.random.uniform(-scale, scale, shape)
def init_xavier_weight_uniform(shape):
return np.random.uniform(-np.sqrt(6. / (shape[0] + shape[1])), np.sqrt(6. / (shape[0] + shape[1])), shape)
def init_xavier_weight(shape):
fan_in, fan_out = shape
s = np.sqrt(2. / (fan_in + fan_out))
return init_normal_weight(shape, s)
def init_ortho_weight(shape):
W = np.random.normal(0.0, 1.0, (shape[0], shape[0]))
u, s, v = np.linalg.svd(W)
return u
def init_weights(shape, name, sample = "xavier"):
if sample == "uniform":
values = np.random.uniform(-0.08, 0.08, shape)
elif sample == "xavier":
values = np.random.uniform(-np.sqrt(6. / (shape[0] + shape[1])), np.sqrt(6. / (shape[0] + shape[1])), shape)
elif sample == "ortho":
W = np.random.randn(shape[0], shape[0])
u, s, v = np.linalg.svd(W)
values = u
else:
raise ValueError("Unsupported initialization scheme: %s" % sample)
return theano.shared(floatX(values), name)
def init_gradws(shape, name):
return theano.shared(floatX(np.zeros(shape)), name)
def init_bias(size, name):
return theano.shared(floatX(np.zeros((size,))), name)
def init_mat(mat, name):
return theano.shared(floatX(mat), name)
def save_model(f, model):
ps = {}
for p in model.params:
ps[p.name] = p.get_value()
pickle.dump(ps, open(f, "wb"))
def load_model(f, model):
ps = pickle.load(open(f, "rb"))
for p in model.params:
p.set_value(ps[p.name])
return model