-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathmodel.py
executable file
·142 lines (117 loc) · 5.42 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import tensorflow as tf
import numpy as np
from tensorflow.contrib import slim
tf.app.flags.DEFINE_integer('text_scale', 512, '')
from nets import resnet_v1
FLAGS = tf.app.flags.FLAGS
def unpool(inputs):
return tf.image.resize_bilinear(inputs, size=[tf.shape(inputs)[1]*2, tf.shape(inputs)[2]*2])
def mean_image_subtraction(images, means=[123.68, 116.78, 103.94]):
'''
image normalization
:param images:
:param means:
:return:
'''
num_channels = images.get_shape().as_list()[-1]
if len(means) != num_channels:
raise ValueError('len(means) must match the number of channels')
channels = tf.split(axis=3, num_or_size_splits=num_channels, value=images)
for i in range(num_channels):
channels[i] -= means[i]
return tf.concat(axis=3, values=channels)
def model(images, weight_decay=1e-5, is_training=True):
'''
define the model, we use slim's implemention of resnet
'''
images = mean_image_subtraction(images)
with slim.arg_scope(resnet_v1.resnet_arg_scope(weight_decay=weight_decay)):
logits, end_points = resnet_v1.resnet_v1_50(images, is_training=is_training, scope='resnet_v1_50')
with tf.variable_scope('feature_fusion', values=[end_points.values]):
batch_norm_params = {
'decay': 0.997,
'epsilon': 1e-5,
'scale': True,
'is_training': is_training
}
with slim.arg_scope([slim.conv2d],
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params,
weights_regularizer=slim.l2_regularizer(weight_decay)):
f = [end_points['pool5'], end_points['pool4'],
end_points['pool3'], end_points['pool2']]
for i in range(4):
print('Shape of f_{} {}'.format(i, f[i].shape))
g = [None, None, None, None]
h = [None, None, None, None]
num_outputs = [None, 128, 64, 32]
for i in range(4):
if i == 0:
h[i] = f[i]
else:
c1_1 = slim.conv2d(tf.concat([g[i-1], f[i]], axis=-1), num_outputs[i], 1)
h[i] = slim.conv2d(c1_1, num_outputs[i], 3)
if i <= 2:
g[i] = unpool(h[i])
else:
g[i] = slim.conv2d(h[i], num_outputs[i], 3)
print('Shape of h_{} {}, g_{} {}'.format(i, h[i].shape, i, g[i].shape))
# here we use a slightly different way for regression part,
# we first use a sigmoid to limit the regression range, and also
# this is do with the angle map
F_score_nrow = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None)
F_score_ncol = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None)
F_score_row = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None)
F_score_col = slim.conv2d(g[3], 1, 1, activation_fn=tf.nn.sigmoid, normalizer_fn=None)
return F_score_nrow, F_score_ncol, F_score_row, F_score_col
def dice_coefficient(y_true_cls, y_pred_cls,
training_mask):
'''
dice loss
:param y_true_cls:
:param y_pred_cls:
:param training_mask:
:return:
'''
eps = 1e-5
intersection = tf.reduce_sum(y_true_cls * y_pred_cls * training_mask)
union = tf.reduce_sum(y_true_cls*training_mask) + tf.reduce_sum(y_pred_cls*training_mask) + eps
loss = 1. - (2 * intersection / union)
tf.summary.scalar('classification_dice_loss', loss)
return loss
def focal_loss(y_true_cls, y_pred_cls):
'''
:param y_true_cls:
:param y_pred_cls:
:return:
'''
gamma = 2
alpha = 0.5
dim = tf.reduce_prod(tf.shape(y_true_cls)[1:])
flat_y_true_cls = tf.reshape(y_true_cls, [-1, dim])
flat_y_pred_cls = tf.reshape(y_pred_cls, [-1, dim])
pt = flat_y_true_cls*flat_y_pred_cls+(1.0-flat_y_true_cls)*(1.0 - flat_y_pred_cls)
weight_map = alpha*tf.pow((1.0-pt),gamma)
weighted_loss = tf.multiply(((flat_y_true_cls * tf.log(flat_y_pred_cls + 1e-9)) + ((1 - flat_y_true_cls) * tf.log(1 - flat_y_pred_cls + 1e-9))), weight_map)
cross_entropy = -tf.reduce_sum(weighted_loss,axis = 1)
cross_entropy_mean = tf.reduce_mean(cross_entropy)
tf.summary.scalar('classification_focal_loss', cross_entropy_mean)
return cross_entropy_mean
def loss(y_true_cls_nrow, y_pred_cls_nrow,
y_true_cls_ncol, y_pred_cls_ncol,
y_true_cls_row, y_pred_cls_row,
y_true_cls_col, y_pred_cls_col,
training_mask):
'''
define the loss used for training, contraning two part,
the first part we use dice loss instead of weighted logloss,
the second part is the iou loss defined in the paper
:param training_mask: mask used in training, to ignore some text annotated by ###
:return:
'''
classification_loss_nrow = dice_coefficient(y_true_cls_nrow, y_pred_cls_nrow, training_mask)
classification_loss_ncol = dice_coefficient(y_true_cls_ncol, y_pred_cls_ncol, training_mask)
classification_loss_row = dice_coefficient(y_true_cls_row, y_pred_cls_row, training_mask)
classification_loss_col = dice_coefficient(y_true_cls_col, y_pred_cls_col, training_mask)
return tf.reduce_mean(classification_loss_row+classification_loss_ncol+classification_loss_nrow+classification_loss_col)