-
Notifications
You must be signed in to change notification settings - Fork 17
/
ReinforceBernoulli.lua
51 lines (46 loc) · 1.81 KB
/
ReinforceBernoulli.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
------------------------------------------------------------------------
--[[ ReinforceBernoulli ]]--
-- Ref A. http://incompleteideas.net/sutton/williams-92.pdf
-- Inputs are bernoulli probabilities (p)
-- Ouputs are samples drawn from this distribution.
-- Uses the REINFORCE algorithm (ref. A p.230-236) which is
-- implemented through the nn.Module:reinforce(reward) interface.
-- gradOutputs are ignored (REINFORCE algorithm).
------------------------------------------------------------------------
local ReinforceBernoulli, parent = torch.class("nn.ReinforceBernoulli", "nn.Reinforce")
function ReinforceBernoulli:updateOutput(input)
self.output:resizeAs(input)
if self.stochastic or self.train ~= false then
-- sample from bernoulli with P(output=1) = input
self._uniform = self._uniform or input.new()
self._uniform:resizeAs(input):uniform(0,1)
self.output:lt(self._uniform, input)
else
-- use p for evaluation
self.output:copy(input)
end
return self.output
end
function ReinforceBernoulli:updateGradInput(input, gradOutput)
-- Note that gradOutput is ignored
-- f : bernoulli probability mass function
-- x : the sampled values (0 or 1) (self.output)
-- p : probability of sampling a 1
-- derivative of log bernoulli w.r.t. p
-- d ln(f(x,p)) (x - p)
-- ------------ = ---------
-- d p p(1 - p)
self.gradInput:resizeAs(input)
-- (x - p)
self.gradInput:copy(self.output):add(-1, input)
-- divide by p(1 - p)
self._div = self._div or input.new()
self._div:resizeAs(input)
self._div:fill(1):add(-1, input):cmul(input)
self.gradInput:cdiv(self._div)
-- multiply by reward
self.gradInput:cmul(self:rewardAs(input))
-- multiply by -1 ( gradient descent on input )
self.gradInput:mul(-1)
return self.gradInput
end