-
Notifications
You must be signed in to change notification settings - Fork 8
/
calc_w.m
40 lines (39 loc) · 1.31 KB
/
calc_w.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
function [w, b] = calc_w(model)
% calculate the w from LibSVM Toolkit
% More details can be found https://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html
%
if numel(model.Label) == 2
% for binary-class
w = model.SVs' * model.sv_coef;
b = -model.rho;
if model.Label(1) == -1
w = -w;
b = -b;
end
else
% for multi-class
nClass = numel(model.Label);
num_f = nClass * (nClass-1)/2;
nSV = model.nSV;
cum_SVs = cumsum(nSV);
dim = size(model.SVs,2);
w = zeros( dim, num_f);
count = 1;
for i = 1 : nClass - 1
for j = i+1 : nClass
if i == 1
coef = [ model.sv_coef( 1 : cum_SVs(i) ,j-1); model.sv_coef( cum_SVs(j-1)+1 : cum_SVs(j) ,i) ];
SVs = [ model.SVs( 1 : cum_SVs(i), : ); model.SVs(cum_SVs(j-1)+1 : cum_SVs(j),:)];
w(:,count) = SVs'*coef;
clear coef SVs;
else
coef = [ model.sv_coef( cum_SVs(i-1)+1 : cum_SVs(i) ,j-1); model.sv_coef( cum_SVs(j-1)+1 : cum_SVs(j) ,i) ];
SVs = [ model.SVs(cum_SVs(i-1)+1 : cum_SVs(i),:); model.SVs(cum_SVs(j-1)+1 : cum_SVs(j),:)];
w(:,count) = SVs'*coef;
clear coef SVs;
end
count = count + 1;
end
end
end
end