-
Notifications
You must be signed in to change notification settings - Fork 6
/
proof.go
191 lines (172 loc) · 7.3 KB
/
proof.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Copyright 2022 Google LLC. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package proof contains helpers for constructing log Merkle tree proofs.
package proof
import (
"fmt"
"math/bits"
"github.com/transparency-dev/merkle/compact"
)
// Nodes contains information on how to construct a log Merkle tree proof. It
// supports any proof that has at most one ephemeral node, such as inclusion
// and consistency proofs defined in RFC 6962.
type Nodes struct {
// IDs contains the IDs of non-ephemeral nodes sufficient to build the proof.
// If an ephemeral node is needed for a proof, it can be recomputed based on
// a subset of nodes in this list.
IDs []compact.NodeID
// begin is the beginning index (inclusive) into the IDs[begin:end] subslice
// of the nodes which will be used to re-create the ephemeral node.
begin int
// end is the ending (exclusive) index into the IDs[begin:end] subslice of
// the nodes which will be used to re-create the ephemeral node.
end int
// ephem is the ID of the ephemeral node in the proof. This node is a common
// ancestor of all nodes in IDs[begin:end]. It is the node that otherwise
// would have been used in the proof if the tree was perfect.
ephem compact.NodeID
}
// Inclusion returns the information on how to fetch and construct an inclusion
// proof for the given leaf index in a log Merkle tree of the given size. It
// requires 0 <= index < size.
func Inclusion(index, size uint64) (Nodes, error) {
if index >= size {
return Nodes{}, fmt.Errorf("index %d out of bounds for tree size %d", index, size)
}
return nodes(index, 0, size).skipFirst(), nil
}
// Consistency returns the information on how to fetch and construct a
// consistency proof between the two given tree sizes of a log Merkle tree. It
// requires 0 <= size1 <= size2.
func Consistency(size1, size2 uint64) (Nodes, error) {
if size1 > size2 {
return Nodes{}, fmt.Errorf("tree size %d > %d", size1, size2)
}
if size1 == size2 || size1 == 0 {
return Nodes{IDs: []compact.NodeID{}}, nil
}
// Find the root of the biggest perfect subtree that ends at size1.
level := uint(bits.TrailingZeros64(size1))
index := (size1 - 1) >> level
// The consistency proof consists of this node (except if size1 is a power of
// two, in which case adding this node would be redundant because the client
// is assumed to know it from a checkpoint), and nodes of the inclusion proof
// into this node in the tree of size2.
p := nodes(index, level, size2)
// Handle the case when size1 is a power of 2.
if index == 0 {
return p.skipFirst(), nil
}
return p, nil
}
// nodes returns the node IDs necessary to prove that the (level, index) node
// is included in the Merkle tree of the given size.
func nodes(index uint64, level uint, size uint64) Nodes {
// Compute the `fork` node, where the path from root to (level, index) node
// diverges from the path to (0, size).
//
// The sibling of this node is the ephemeral node which represents a subtree
// that is not complete in the tree of the given size. To compute the hash
// of the ephemeral node, we need all the non-ephemeral nodes that cover the
// same range of leaves.
//
// The `inner` variable is how many layers up from (level, index) the `fork`
// and the ephemeral nodes are.
inner := bits.Len64(index^(size>>level)) - 1
fork := compact.NewNodeID(level+uint(inner), index>>inner)
begin, end := fork.Coverage()
left := compact.RangeSize(0, begin)
right := compact.RangeSize(end, size)
node := compact.NewNodeID(level, index)
// Pre-allocate the exact number of nodes for the proof, in order:
// - The seed node for which we are building the proof.
// - The `inner` nodes at each level up to the fork node.
// - The `right` nodes, comprising the ephemeral node.
// - The `left` nodes, completing the coverage of the whole [0, size) range.
nodes := append(make([]compact.NodeID, 0, 1+inner+right+left), node)
// The first portion of the proof consists of the siblings for nodes of the
// path going up to the level at which the ephemeral node appears.
for ; node.Level < fork.Level; node = node.Parent() {
nodes = append(nodes, node.Sibling())
}
// This portion of the proof covers the range [begin, end) under it. The
// ranges to the left and to the right from it remain to be covered.
// Add all the nodes (potentially none) that cover the right range, and
// represent the ephemeral node. Reverse them so that the Rehash method can
// process hashes in the convenient order, from lower to upper levels.
len1 := len(nodes)
nodes = compact.RangeNodes(end, size, nodes)
reverse(nodes[len(nodes)-right:])
len2 := len(nodes)
// Add the nodes that cover the left range, ordered increasingly by level.
nodes = compact.RangeNodes(0, begin, nodes)
reverse(nodes[len(nodes)-left:])
// nodes[len1:len2] contains the nodes representing the ephemeral node. If
// it's empty, make it zero. Note that it can also contain a single node.
// Depending on the preference of the layer above, it may or may not be
// considered ephemeral.
if len1 >= len2 {
len1, len2 = 0, 0
}
return Nodes{IDs: nodes, begin: len1, end: len2, ephem: fork.Sibling()}
}
// Ephem returns the ephemeral node, and indices begin and end, such that
// IDs[begin:end] slice contains the child nodes of the ephemeral node.
//
// The list is empty iff there are no ephemeral nodes in the proof. Some
// examples of when this can happen: a proof in a perfect tree; an inclusion
// proof for a leaf in a perfect subtree at the right edge of the tree.
func (n Nodes) Ephem() (compact.NodeID, int, int) {
return n.ephem, n.begin, n.end
}
// Rehash computes the proof based on the slice of node hashes corresponding to
// their IDs in the n.IDs field. The slices must be of the same length. The hc
// parameter computes a node's hash based on hashes of its children.
//
// Warning: The passed-in slice of hashes can be modified in-place.
func (n Nodes) Rehash(h [][]byte, hc func(left, right []byte) []byte) ([][]byte, error) {
if got, want := len(h), len(n.IDs); got != want {
return nil, fmt.Errorf("got %d hashes but expected %d", got, want)
}
cursor := 0
// Scan the list of node hashes, and store the rehashed list in-place.
// Invariant: cursor <= i, and h[:cursor] contains all the hashes of the
// rehashed list after scanning h up to index i-1.
for i, ln := 0, len(h); i < ln; i, cursor = i+1, cursor+1 {
hash := h[i]
if i >= n.begin && i < n.end {
// Scan the block of node hashes that need rehashing.
for i++; i < n.end; i++ {
hash = hc(h[i], hash)
}
i--
}
h[cursor] = hash
}
return h[:cursor], nil
}
func (n Nodes) skipFirst() Nodes {
n.IDs = n.IDs[1:]
// Fixup the indices into the IDs slice.
if n.begin < n.end {
n.begin--
n.end--
}
return n
}
func reverse(ids []compact.NodeID) {
for i, j := 0, len(ids)-1; i < j; i, j = i+1, j-1 {
ids[i], ids[j] = ids[j], ids[i]
}
}