diff --git a/pandas_ta/overlap/jma.py b/pandas_ta/overlap/jma.py new file mode 100644 index 00000000..3fd8be12 --- /dev/null +++ b/pandas_ta/overlap/jma.py @@ -0,0 +1,107 @@ +# -*- coding: utf-8 -*- +from pandas_ta.utils import get_offset, verify_series +from pandas import Series +import numpy as np +from numpy import nan as npNaN +import math + +def jma(close, length=None, phase=0, offset=None, **kwargs): + """ + Indicator: Jurik Moving Average (JMA) + Implementation of: https://c.mql5.com/forextsd/forum/164/jurik_1.pdf + Jurik Volty from: https://www.prorealcode.com/prorealtime-indicators/jurik-volatility-bands/ + """ + # Validate Arguments + length = int(length) if length and length > 0 else 7 + close = verify_series(close, length) + offset = get_offset(offset) + if close is None: return + + # Define base variables + jma = np.zeros_like(close) + Volty = np.zeros_like(close) + vSum = np.zeros_like(close) + Kv = det0 = det1 = ma2 = 0.0 + jma[0] = ma1 = uBand = lBand = close[0] + # Static variables + SumLen = 10 + len = 0.5*(length-1) + PR = 0.5 if phase<-100 else 2.5 if phase>100 else phase*0.01+1.5 + len1 = max((math.log(math.sqrt(len))/math.log(2.0))+2.0, 0) + pow1 = max(len1-2.0, 0.5) + len2 = math.sqrt(len)*len1 + bet = len2/(len2+1) + beta = 0.45*(length-1)/(0.45*(length-1)+2.0) + for i in range(1, close.shape[0]): + price = close[i] + # Price volatility + del1 = price-uBand + del2 = price-lBand + Volty[i] = max(abs(del1),abs(del2)) if abs(del1)!=abs(del2) else 0 + # Relative price volatility factor + vSum[i] = vSum[i-1] + (Volty[i]-Volty[max(i-SumLen,0)])/SumLen + avgVolty = np.average(vSum[max(i-65,0):i+1]) + dVolty = 0 if avgVolty==0 else Volty[i]/avgVolty + rVolty = max(1.0, min(math.pow(len1, 1/pow1), dVolty)) + # Jurik volatility bands + pow2 = math.pow(rVolty, pow1) + Kv = math.pow(bet, math.sqrt(pow2)) + uBand = price if (del1 > 0) else price - (Kv*del1) + lBand = price if (del2 < 0) else price - (Kv*del2) + # Jurik Dynamic Factor + power = math.pow(rVolty, pow1) + alpha = math.pow(beta, power) + # 1st stage - prelimimary smoothing by adaptive EMA + ma1 = ((1-alpha)*price)+(alpha*ma1) # + # 2nd stage - one more prelimimary smoothing by Kalman filter + det0 = ((price-ma1)*(1-beta))+(beta*det0) + ma2 = ma1+PR*det0 + # 3rd stage - final smoothing by unique Jurik adaptive filter + det1 = ((ma2-jma[i-1])*(1-alpha)*(1-alpha))+(alpha*alpha*det1) + jma[i] = jma[i-1] + det1 + + # Remove initial lookback data and convert to pandas frame + jma[0:length-1] = npNaN + jma = Series(jma, index=close.index) + + # Offset + if offset != 0: + jma = jma.shift(offset) + + # Handle fills + if "fillna" in kwargs: + jma.fillna(kwargs["fillna"], inplace=True) + if "fill_method" in kwargs: + jma.fillna(method=kwargs["fill_method"], inplace=True) + + # Name & Category + jma.name = f"JMA_{length}" + jma.category = "overlap" + + return jma + + +jma.__doc__ = \ +""" Jurik Moving Average Average (JMA) + +Sources: + Implementation of: https://c.mql5.com/forextsd/forum/164/jurik_1.pdf + +Calculation: + Default Inputs: + length=7 + phase=0 + +Args: + close (pd.Series): Series of 'close's + length (int): Period of calculation. Default: 7 + phase (float): how heavy/light the average is [-100, 100] Default: 0 + offset (int): How many lengths to offset the result. Default: 0 + +Kwargs: + fillna (value, optional): pd.DataFrame.fillna(value) + fill_method (value, optional): Type of fill method + +Returns: + pd.Series: New feature generated. +"""