-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathRTCMv3_decode.py
executable file
·452 lines (327 loc) · 11.6 KB
/
RTCMv3_decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
#!/usr/bin/env python
''' Decode RTCM v3 messages and extract parameters required to generate v2 Type 1 and 3 messages.
The end game here is to be able to use RTCMv3 broadcast CORS corrections from, e.g. Geoscience
Australia, as RTCMv2 input to COTS uBlox receviers
Much of this work, esp. getting the unit conversions right, is based on rtcm.c and rtcm3.c from
rtklib.
'''
import sys, time
import bitstring as bs
import satPosition, util, RTCMv2, positionEstimate
from bitstring import BitStream
max_sats = 12
RTCMv3_PREAMBLE = 0xD3
PRUNIT_GPS = 299792.458
CLIGHT = 299792458.0
gpsPi = 3.1415926535898
FREQ1 = 1.57542E9
FREQ2 = 1.22760E9
FREQ5 = 1.17645E9
FREQ6 = 1.27875E9
FREQ7 = 1.20714E9
FREQ8 = 1.191795E9
L2codes = ['CODE_L2C', 'CODE_L2P', 'CODE_L2W', 'CODE_L2W']
lam_carr= [CLIGHT/FREQ1,CLIGHT/FREQ2,CLIGHT/FREQ5,CLIGHT/FREQ6,CLIGHT/FREQ7,CLIGHT/FREQ8]
# Globals required to build v2 messages
corr_set = {}
statid = 0 #initially only support 1 reference station
eph = {}
prs = {}
week = 0
itow = 0
ref_pos = None
correct_rxclk = True
rtcm = RTCMv2.RTCMBits()
rtcm.type1_send_time = 0
rtcm.type3_send_time = 0
logfile = time.strftime('satlog-%y%m%d-%H%M.txt')
class DynamicEph:
pass
satlog = None
def save_satlog(t, errset):
global satlog
if satlog is None:
satlog = open(logfile, 'w')
eset = [ str(errset.get(s,'0')) for s in range(33) ]
satlog.write(str(t) + "," + ",".join(eset) + "\n")
satlog.flush()
cp_hist = {}
def adjcp(sat, freq, cp):
'''Adjust carrier phase for rollover'''
if not sat in cp_hist or cp_hist[sat] is None:
cp_hist[sat] = [0.0, 0.0]
if cp_hist[sat][freq] == 0.0:
return cp
elif cp > cp_hist[sat][freq] - 750.0:
cp += 1500.0
elif cp > cp_hist[sat][freq] + 750.0:
cp -= 1500.0
cp_hist[sat][freq] = cp
return cp
lock_hist = {}
def lossoflock(sat, freq, lock):
'''Calc loss of lock indication'''
if not sat in lock_hist or lock_hist[sat] is None:
lock_hist[sat] = [0, 0]
lli = (not lock and not lock_hist[sat][freq]) or (lock < lock_hist[sat][freq])
lock_hist[sat][freq] = lock
return lli
def snratio(snr):
return int(snr <= 0.0 or 0.0 if 255.5 <= snr else snr * 4.0 + 0.5)
def decode_1004(pkt):
global statid, itow, prs, corr_set
statid = pkt.read(12).uint
tow = pkt.read(30).uint * 0.001
sync = pkt.read(1).uint
nsat = pkt.read(5).uint
smoothed = bool(pkt.read(1).uint)
smint = pkt.read(3).uint
prs = {}
temp_corrs = {}
for n in range(nsat):
svid = pkt.read(6).uint
temp_corrs[svid] = {}
code1 = pkt.read(1).uint
pr1 = pkt.read(24).uint
ppr1 = pkt.read(20).int
lock1 = pkt.read(7).uint
amb = pkt.read(8).uint
cnr1 = pkt.read(8).uint
code2 = pkt.read(2).uint
pr21 = pkt.read(14).int
ppr2 = pkt.read(20).int
lock2 = pkt.read(7).uint
cnr2 = pkt.read(8).uint
pr1 = pr1 * 0.02 + amb * PRUNIT_GPS
if ppr1 != 0x80000:
temp_corrs[svid]['P1'] = pr1
cp1 = adjcp(svid, 0, ppr1 * 0.0005 / lam_carr[0])
temp_corrs[svid]['L1'] = pr1 / lam_carr[0] + cp1
temp_corrs[svid]['LLI1'] = lossoflock(svid, 0, lock1)
temp_corrs[svid]['SNR1'] = snratio(cnr1 * 0.25)
temp_corrs[svid]['CODE1'] = 'CODE_P1' if code1 else 'CODE_C1'
if pr21 != 0xE000:
temp_corrs[svid]['P2'] = pr1 + pr21 * 0.02
if ppr2 != 0x80000:
cp2 = adjcp(svid, 1, ppr2 * 0.0005 / lam_carr[1])
temp_corrs[svid]['L2'] = pr1 / lam_carr[1] + cp2
temp_corrs[svid]['LLI2'] = lossoflock(svid, 1, lock2)
temp_corrs[svid]['SNR2'] = snratio(cnr2 * 0.25)
temp_corrs[svid]['CODE2'] = L2codes[code2]
# Sort the list of sats by SNR, trim to 10 sats
quals = sorted([ (s, temp_corrs[s]['SNR1']) for s in temp_corrs], key=lambda x: x[1])
if len(quals) > max_sats:
print("Drop {} sats for encode".format(len(quals) - max_sats))
quals = quals[:max_sats]
print(nsat, len(quals), quals)
# Copy the kept sats in to the correction set
corr_set = {}
for sv, snr in quals:
corr_set[sv] = temp_corrs[sv]
prs[sv] = temp_corrs[sv]['P1']
itow = tow
def decode_1006(pkt):
global ref_pos
staid = pkt.read(12).uint
# Only set reference station location if it's the one used by
# the observations
if staid != statid:
return
itrf = pkt.read(6).uint
pkt.read(4)
ref_x = pkt.read(38).int * 0.0001
pkt.read(2)
ref_y = pkt.read(38).int * 0.0001
pkt.read(2)
ref_z = pkt.read(38).int * 0.0001
anth = pkt.read(16).uint * 0.0001
ref_pos = [ref_x, ref_y, ref_z]
print(ref_pos)
print(util.PosVector(*ref_pos).ToLLH())
def decode_1033(pkt):
# Don't really care about any of this stuff at this stage..
des = ''
sno = ''
rec = ''
ver = ''
rsn = ''
stat_id = pkt.read(12).uint
n = pkt.read(8).uint
for i in range(n):
des = des + chr(pkt.read(8).uint)
setup = pkt.read(8).uint
n = pkt.read(8).uint
for i in range(n):
sno = sno + chr(pkt.read(8).uint)
n = pkt.read(8).uint
for i in range(n):
rec = rec + chr(pkt.read(8).uint)
n = pkt.read(8).uint
for i in range(n):
ver = ver + chr(pkt.read(8).uint)
n = pkt.read(8).uint
for i in range(n):
rsn = rsn + chr(pkt.read(8).uint)
#print(des, sno, rec, ver, rsn)
def decode_1019(pkt):
global eph, week
svid = pkt.read(6).uint
week = pkt.read(10).uint
acc = pkt.read(4).uint
l2code = pkt.read(2).uint
idot = pkt.read(14).int
iode = pkt.read(8).uint
toc = pkt.read(16).uint
af2 = pkt.read(8).int
af1 = pkt.read(16).int
af0 = pkt.read(22).int
iodc = pkt.read(10).uint
crs = pkt.read(16).int
deltan = pkt.read(16).int
m0 = pkt.read(32).int
cuc = pkt.read(16).int
e = pkt.read(32).uint
cus = pkt.read(16).int
rootA = pkt.read(32).uint
toe = pkt.read(16).uint
cic = pkt.read(16).int
omega0 = pkt.read(32).int
cis = pkt.read(16).int
i0 = pkt.read(32).int
crc = pkt.read(16).int
omega = pkt.read(32).int
omegadot = pkt.read(24).int
tgd = pkt.read(8).int
health = pkt.read(6).uint
l2p = pkt.read(1).uint
fit = pkt.read(1).uint
eph[svid] = DynamicEph()
eph[svid].crs = crs * pow(2, -5)
eph[svid].cuc = cuc * pow(2, -29)
eph[svid].cus = cus * pow(2, -29)
eph[svid].cic = cic * pow(2, -29)
eph[svid].cis = cis * pow(2, -29)
eph[svid].crc = crc * pow(2, -5)
eph[svid].deltaN = deltan * pow(2, -43) * gpsPi
eph[svid].M0 = m0 * pow(2, -31) * gpsPi
eph[svid].ecc = e * pow(2, -33)
eph[svid].A = pow(rootA * pow(2, -19), 2)
eph[svid].omega0 = omega0 * pow(2, -31) * gpsPi
eph[svid].i0 = i0 * pow(2, -31) * gpsPi
eph[svid].omega = omega * pow(2, -31) * gpsPi
eph[svid].omega_dot = omegadot* pow(2, -43) * gpsPi
eph[svid].toe = toe * pow(2, 4)
eph[svid].idot = idot * pow(2, -43) * gpsPi
eph[svid].iode = iode
eph[svid].toc = toc * pow(2, 4)
eph[svid].Tgd = tgd * pow(2, -31)
eph[svid].af0 = af0 * pow(2, -31)
eph[svid].af1 = af1 * pow(2, -43)
eph[svid].af2 = af2 * pow(2, -55)
def regen_v2_type1():
if ref_pos is None:
return
errset = {}
pranges = {}
for svid in prs:
if svid not in eph:
#print("Don't have ephemeris for {}, only {}".format(svid, eph.keys()))
continue
toc = eph[svid].toc
tof = prs[svid] / util.speedOfLight
# assume the time_of_week is the exact receiver time of week that the message arrived.
# subtract the time of flight to get the satellite transmit time
transmitTime = itow - tof
T = util.correctWeeklyTime(transmitTime - toc)
satpos = satPosition.satPosition_raw(eph[svid], svid, transmitTime)
Trel = satpos.extra
satPosition.correctPosition_raw(satpos, tof)
geo = satpos.distance(util.PosVector(*ref_pos))
dTclck = eph[svid].af0 + eph[svid].af1 * T + eph[svid].af2 * T * T + Trel - eph[svid].Tgd
# Incoming PR is already corrected for receiver clock bias
prAdjusted = prs[svid] + dTclck * util.speedOfLight
errset[svid] = geo - prAdjusted
pranges[svid] = prAdjusted
save_satlog(itow, errset)
if correct_rxclk:
rxerr = positionEstimate.clockLeastSquares_ranges(eph, pranges, itow, ref_pos, 0)
if rxerr is None:
return
rxerr *= util.speedOfLight
for svid in errset:
errset[svid] += rxerr
pranges[svid] += rxerr
rxerr = positionEstimate.clockLeastSquares_ranges(eph, pranges, itow, ref_pos, 0) * util.speedOfLight
print("Residual RX clock error {}".format(rxerr))
iode = {}
for svid in eph:
iode[svid] = eph[svid].iode
msg = rtcm.RTCMType1_ext(errset, itow, week, iode)
if len(msg) > 0:
return msg
def regen_v2_type3():
msg = rtcm.RTCMType3_ext(itow, week, util.PosVector(*ref_pos))
if len(msg) > 0:
return msg
def parse_rtcmv3(pkt):
pkt_type = pkt.read(12).uint
print pkt_type
if pkt_type == 1004:
decode_1004(pkt)
return regen_v2_type1()
elif pkt_type == 1006:
decode_1006(pkt)
return regen_v2_type3()
elif pkt_type == 1019:
decode_1019(pkt)
elif pkt_type == 1033:
decode_1033(pkt)
#else:
# print "Ignore"
def RTCM_converter_thread(server, port, username, password, mountpoint, rtcm_callback = None):
import subprocess
nt = subprocess.Popen(["./ntripclient",
"--server", server,
"--password", password,
"--user", username,
"--mountpoint", mountpoint ],
stdout=subprocess.PIPE)
"""nt = subprocess.Popen(["./ntrip.py", server, str(port), username, password, mountpoint],
stdout=subprocess.PIPE)"""
if nt is None or nt.stdout is None:
indev = sys.stdin
else:
indev = nt.stdout
print("RTCM using input {}".format(indev))
while True:
sio = indev
d = ord(sio.read(1))
if d != RTCMv3_PREAMBLE:
continue
pack_stream = BitStream()
l1 = ord(sio.read(1))
l2 = ord(sio.read(1))
pack_stream.append(bs.pack('2*uint:8', l1, l2))
pack_stream.read(6)
pkt_len = pack_stream.read(10).uint
pkt = sio.read(pkt_len)
parity = sio.read(3)
if len(pkt) != pkt_len:
print "Length error {} {}".format(len(pkt), pkt_len)
continue
if True: #TODO check parity
for d in pkt:
pack_stream.append(bs.pack('uint:8',ord(d)))
msg = parse_rtcmv3(pack_stream)
if msg is not None and rtcm_callback is not None:
rtcm_callback(msg)
def run_RTCM_converter(server, port, user, passwd, mount, rtcm_callback=None, force_rxclk_correction=True):
global correct_rxclk
import threading
correct_rxclk = force_rxclk_correction
t = threading.Thread(target=RTCM_converter_thread, args=(server, port, user, passwd, mount, rtcm_callback,))
t.start()
def _printer(p):
print(p)
if __name__ == '__main__':
RTCM_converter_thread('192.104.43.25', 2101, sys.argv[1], sys.argv[2], 'TID10', _printer)