forked from pzorin/decoupling-lecture-notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
07-max-schroedinger.tex
395 lines (374 loc) · 17.9 KB
/
07-max-schroedinger.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
\section{Weighted Strichartz estimate for the free Schr\"odinger equation}
In this section we prove a weighted Strichartz estimate from \cite{arxiv:1805.02775}.
That article actually proves a more elaborate estimate using also some results from \cite{MR3842310} as an input, but the more elaborate version does not give better results for fractal weights.
\subsection{Notation}
We will prove a priori estimates for solutions $u = \eit f$ of the free Schr\"odinger equation with initial data $f \in L^{2}(\R^{n})$.
The estimate will be on a ball of spatial scale $R$.
For a small $\delta$ we consider small balls of scale $K^{2}$, where $K=R^{\delta}$ will be the parameter in the Bourgain--Guth argument.
By parabolic rescaling we will get a bunch of tubes of different sizes summarized below.
\begin{center}
\begin{tabular}{cccc} \toprule
Name & Symbol & Size before scaling & Size after scaling\\ \midrule
Big & $\bB$ & $R$ & \\
Small & $\bS$ & $K^{2}$ & \\
Big at previous scale & $\bBp$ & $R/K \times R$ & $R/K^{2} = R_{1}$\\
Small at previous scale & $\bSp$ & $KK_{1}^{2} \times K^{2}K_{1}^{2}$ & $K_{1}^{2}$\\ \midrule
Outer & $\bO$ & $R/r \times R$ & \\
Inner & $\bI$ & $K^{2} r^{1-4\delta} \times K^{2} r^{2-4\delta}$ & \\
Outer at previous scale& $\bOp$ & $R/(Kr) \times R$ & $R/(K^{2}r) \times R/K^{2}$\\
Inner at previous scale & $\bIp$ & $K K_{1}^{2} r^{1-4\delta} \times K^{2} K_{1}^{2} r^{2-4\delta}$ & $K_{1}^{2} r^{1-4\delta} \times K_{1}^{2} r^{2-4\delta}$\\
\bottomrule
\end{tabular}
\end{center}
The following possible inclusions will be relevant: $\bB \supset \bBp \supset \bSp \supset \bS$ (for the latter inclusion it is important that $\delta \leq 1/4$).
\subsection{Weighted estimate}
\begin{proposition} \label{prop:fractal-strichartz2}
Let $n\geq 1$ and $E,E'$ suitably large depending on $n$.
Let $p=\frac{2(n+1)}{n-1}$ ($p=\infty$ when $n=1$).
Fix $\delta \in (0,1/4)$.
Let $2 \leq t \leq 2(n+1)/n$, $p_{\mathrm{mr},n}=2(n+1)/n$, $p_{\mathrm{dec},n-1}=2(n+1)/(n-1)$,
\[
\frac{1}{t_{1}} = \frac{1}{t} - \frac{1}{p_{\mathrm{mr},n}}, \quad
\frac{1}{t_{2}} = \frac{1}{t} - \frac{1}{p_{\mathrm{dec},n-1}}, \quad
\frac{1}{t_{3}} = \frac{n+2}{p_{\mathrm{dec},n-1}} - \frac{n}{2} = - \frac{1}{n+1}.
\]
For $R\geq 1$ let $\FrStr(R)$ denote the smallest constant such that the following holds with $K=R^{\delta}$.
For every non-negative weight function $(\mu_{\bS})$ and every function $f$ with $\supp \widehat{f}\subset B^n(0,1)$ we have
\begin{equation}\label{eq:fractal-strichartz2}
\ell^{t}_{\bS \subset \bB} \mu_{\bS} \norm{ u }_{L^{p}(w_{\bS,E})}
\leq
\FrStr(R) W R^{-1/2} \norm{ u }_{L^{2}(w_{\bB,E'})}.
\end{equation}
with
\[
W := \sup_{1 \leq r \leq R^{1/2}} r^{1/t_{3}} \sup_{\bO} \ell^{t_{1}}_{\bI \subset \bO} \ell^{t_{2}}_{\bS \subset \bI} \mu_{\bS}.
\]
Then
\[
\FrStr(R) \leq
C_{\epsilon} K^{C_{\epsilon}} R^{\epsilon} + C_{\epsilon'} K^{\epsilon'} \FrStr(R/K^{2}).
\]
\end{proposition}
\begin{corollary}
\label{cor:fractal-strichartz2}
If $\delta$ is sufficiently small depending on $\epsilon$, then
\begin{equation}\label{eq:fractal-strichartz2}
\ell^{t}_{\bS \subset \bB} \mu_{\bS} \norm{ u }_{L^{p}(\bS)}
\lesssim_{\epsilon}
W R^{\epsilon} \norm{ f }_{L^{2}(\R^{n})}.
\end{equation}
\end{corollary}
In the remaining part of this section we prove Proposition~\ref{prop:fractal-strichartz2}.
\paragraph{Bourgain--Guth argument}
Denote by $\Part{K^{-1}}$ the set of $K^{-1}$-cubes inside the unit ball in the frequency space $\R^{n}$.
Using a smooth partition of unity we decompose $f = \sum_{\tau \in \Part{K^{-1}}} f_{\tau}$ and $u_{\tau} = \eit f_{\tau}$ accordingly.
Given a $K^2$-cube $\bS \subset \R^{n+1}$, we define its \emph{significant} set
\[
\calS(\bS):=\Set[\Big]{\tau \in \Part{K^{-1}} \given \norm{u_\tau}_{L^p(w_{\bS,E})} \geq \frac{\norm{u}_{L^p(w_{\bS,E})}}{100(\#\Part{K^{-1}})} }.
\]
We say a $K^2$-cube $\bS$ is \emph{narrow} if there is an $(n-1)$-dimensional subspace $V \subset \R^{n}$ such that all cubes in $\calS(\bS)$ are $100/K$-close to $V$, and \emph{broad} otherwise.
Then for any broad cube $\bS$ there exist $\nu$-transverse cubes $\tau_1,\dotsc, \tau_{n+1} \in \calS(\bS)$ with $\nu \gtrsim K^{-n}$.
\paragraph{Localized multilinear restriction}
Let $\tau_{1},\dotsc,\tau_{n+1} \in \Part{K^{-1}}$ be $\nu$-transverse.
Then from multilinear restriction we can deduce
\[
\ell^{2(n+1)/n}_{\bS \subset \bB} \avprod \norm{ \tilde{u}_{\tau_{j}} }_{L^{p}(\bS)}
\lesssim_{\epsilon}
K^{C} \nu^{-C_{\epsilon}} R^{-1/2+\epsilon} \avprod \norm{ \tilde{u}_{\tau_{j}} }_{L^{2}(\R^{n+1})}
\]
for any functions $\tilde{u}_{\tau}$ supported in the $R^{-1}$-neighborhood of the paraboloid over $\tau$.
In particular this holds for $\tilde{u}_{\tau} = u_{\tau} \psi_{\bB}$ for some bump function of scale $R$ adapted to the ball $\bB$ whose Fourier transform is supported in an $R^{-1}$-neighborhood of $0$, and it follows that
\begin{align*}
\ell^{2(n+1)/n}_{\bS \subset \bB} \avprod \norm{ u_{\tau_{j}} }_{L^{p}(\bS)}
&\lesssim_{\epsilon,E''}
K^{C} \nu^{-C_{\epsilon}} R^{-1/2+\epsilon} \avprod \norm{ u_{\tau_{j}} }_{L^{2}(w_{\bB,E''})}\\
&\lesssim_{E'',E'''}
K^{C} \nu^{-C_{\epsilon}} R^{-1/2+\epsilon} \norm{ u }_{L^{2}(w_{\bB,E'''})},
\end{align*}
where we use that $u_{\tau}$ is a convolution of $u$ with an $L^{1}$ normalized smooth kernel.
By an averaging procedure similar to that in the proof of decoupling this implies
\begin{equation}
\label{eq:mult-restr:local}
\ell^{2(n+1)/n}_{\bS \subset \bB} \avprod \norm{ u_{\tau_{j}} }_{L^{p}(w_{\bS,E})}
\lesssim_{\epsilon,E,E'}
K^{C} \nu^{-C_{\epsilon}} R^{-1/2+\epsilon} \norm{ u }_{L^{2}(w_{\bB,E'})}
\end{equation}
for some suitable $E,E'$.
\paragraph{Broad case}
If $\bS$ is broad, then for some $\nu$-transverse $\tau_{1},\dotsc,\tau_{n+1} \in \Part{K^{-1}}$ depending on $\bS$ we have
\[
\norm{ u }_{L^{p}(w_{\bS,E})}
\lesssim
K^{C} \avprod_{j=1}^{n+1} \norm{ u_{\tau_{j}} }_{L^{p}(w_{\bS,E})}
\]
so for the sum over broad $\bS$ by \eqref{eq:mult-restr:local} we have
\begin{align*}
\ell^{t}_{\bS \subset \bB} \mu_{\bS} \norm{ u }_{L^{p}(w_{\bS,E})}
&\lesssim
K^{C} \ell^{t}_{\bS \subset \bB} \mu_{\bS}
\sup_{\substack{\tau_{1},\dotsc,\tau_{n+1}\in\Part{K^{-1}}\\ \nu-\text{transverse}}}
\avprod \norm{ u_{\tau_{j}} }_{L^{p}(w_{\bS,E})}\\
&\leq
K^{C} W_{\bB} \ell^{2(n+1)/n}_{\bS \subset \bB}
\sup_{\substack{\tau_{1},\dotsc,\tau_{n+1}\in\Part{K^{-1}}\\ \nu-\text{transverse}}}
\avprod \norm{ u_{\tau_{j}} }_{L^{p}(w_{\bS,E})}\\
&\leq
K^{C} W_{\bB}
\sum_{\substack{\tau_{1},\dotsc,\tau_{n+1}\in\Part{K^{-1}}\\ \nu-\text{transverse}}}
\ell^{2(n+1)/n}_{\bS \subset \bB} \avprod \norm{ u_{\tau_{j}} }_{L^{p}(w_{\bS,E})}\\
&\lesssim_{\epsilon}
\nu^{-C_{\epsilon}} K^{C} R^{\epsilon} W_{\bB}
\sum_{\substack{\tau_{1},\dotsc,\tau_{n+1}\in\Part{K^{-1}}\\ \nu-\text{transverse}}}
R^{-1/2} \norm{u}_{L^{2}(w_{\bB,E'})}\\
&\lesssim
K^{C_{\epsilon}} R^{\epsilon}
W_{\bB} R^{-1/2} \norm{u}_{L^{2}(w_{\bB,E'})},
\end{align*}
where $W_{\bB} = \ell^{t_{1}}_{\bS \subset \bB} \mu_{\bS} \leq W$.
This finishes the estimate for the contribution of the broad cubes.
\paragraph{Narrow case}
If the cube $\bS$ is narrow, then by lower-dimensional decoupling we have
\begin{align*}
\norm{u}_{L^p(w_{\bS,E})}
&\sim
\norm[\big]{\sum_{\tau\in \calS(\bS)}u_\tau}_{L^p(w_{\bS,E})}\\
&\lesssim_{\epsilon} K^{\epsilon}
\ell^{2}_{\tau\in \calS(\bS)} \norm{u_\tau}_{L^p(w_{\bS,E})}\\
&\leq K^{\epsilon}
\ell^{2}_{\tau} \norm{u_\tau}_{L^p(w_{\bS,E})}.
\end{align*}
Summing over narrow $\bS$ it remains to estimate
\begin{align*}
\ell^{t}_{\bS \subset \bB} \ell^{2}_{\tau} \mu_{\bS} \norm{ u_{\tau} }_{L^{p}(w_{\bS,E})}
&\leq
\ell^{2}_{\tau} \ell^{t}_{\bS \subset \bB} \mu_{\bS} \norm{ u_{\tau} }_{L^{p}(w_{\bS,E})}\\
&\lesssim
\ell^{2}_{\tau} \ell^{t}_{\bBp : \tau} \ell^{t}_{\bS \subset \bBp} \mu_{\bS} \norm{ u_{\tau} }_{L^{p}(w_{\bS,E})}\\
&\lesssim
\ell^{2}_{\tau} \ell^{2}_{\bBp : \tau} \ell^{t}_{\bS \subset \bBp} \mu_{\bS} \norm{ u_{\tau} }_{L^{p}(w_{\bS,E})},
\end{align*}
where for each $\tau$ we sum over tubes $\bBp$ polar to $\tau$.
Fixing $\tau$ and $\bBp$ polar to $\tau$ we obtain
\begin{equation} \label{eq:fixed-Box-norm2}
\begin{split}
\ell^{t}_{\bS \subset \bBp} \mu_{\bS} \norm{ u_{\tau} }_{L^{p}(w_{\bS,E})}
&\lesssim
\ell^{t}_{\bSp \subset \bBp} \ell^{t}_{\bS \subset \bSp} \mu_{\bS} \norm{ u_{\tau} }_{L^{p}(w_{\bS,E})}\\
&\leq
\ell^{t}_{\bSp \subset \bBp} \mu_{\bSp} \ell^{p}_{\bS \subset \bSp} \norm{ u_{\tau} }_{L^{p}(w_{\bS,E})}\\
&\lesssim
\ell^{t}_{\bSp \subset \bBp} \mu_{\bSp} \norm{ u_{\tau} }_{L^{p}(w_{\bSp,E})},
\end{split}
\end{equation}
where
\[
\mu_{\bSp} := \ell^{t_{2}}_{\bS \subset \bSp} \mu_{\bS}.
\]
Recall parabolic scaling $L_{\tau}$ and scaling/modulation operators $M_{\tau}$ that we used in the proof of the decoupling inequality.
\begin{center}
\includegraphics[height=4cm]{max-schroedinger-scaling.png}
\end{center}
We have
\begin{align*}
\eqref{eq:fixed-Box-norm2}
%\ell^{t}_{\bSp \subset \bBp} \mu_{\bSp} \norm{ u_{\tau} }_{L^{p}(w_{\bSp,E})}
&=
K^{(n+2)/p} \ell^{t}_{\bSp \subset \bBp} \mu_{\bSp} \norm{ M_{\tau}^{-1} u_{\tau} }_{L^{p}(w_{L_{\tau}\bSp,E})}\\
&\leq
K^{(n+2)/p} \FrStr(R/K^{2}) W' (R/K^{2})^{-1/2} \norm{ M_{\tau}^{-1} u_{\tau} }_{L^{2}(w_{L_{\tau}\bBp,E'})}\\
&=
K^{(n+2)/p} \FrStr(R/K^{2}) W' (R/K^{2})^{-1/2} K^{-(n+2)/2} \norm{ u_{\tau} }_{L^{2}(w_{\bBp,E'})}\\
&=
K^{-1/(n+1)} \FrStr(R/K^{2}) W' R^{-1/2} \norm{ u_{\tau} }_{L^{2}(w_{\bBp,E'})}
\end{align*}
where $W'$ is computed using the new weights $\mu_{\bSp}$.
Since
\[
\ell^{2}_{\tau} \ell^{2}_{\bBp : \tau} \norm{u_{\tau}}_{L^{2}(w_{\bBp,E'})}
\lesssim
\ell^{2}_{\tau} \norm{u_{\tau}}_{L^{2}(w_{\bB,E'})}
\lesssim
\norm{u}_{L^{2}(w_{\bB,E'})},
\]
where we used a localized square function estimate, it remains to observe
\begin{equation}
\label{eq:big-const2}
K^{-1/(n+1)} W'
\lesssim
W.
\end{equation}
Indeed, every $r$ in the definition of $W'$ corresponds to $Kr$ in the definition of $W$.
This finishes the estimate for the narrow cubes and completes the proof of Proposition~\ref{prop:fractal-strichartz2}.
\subsection{Consequences for fractal measures}
Now we evaluate $W$ in the case when $(\mu_{\bS})$ is the characteristic function of an $\alpha$-dimensional set.
Specifically, we assume that $\mu_{\bS} \in \Set{0,1}$ and for any $K^{2} \leq r \leq R$ and $x$ we have
\begin{equation}
\label{eq:mu-alpha-dim}
\sum_{\bS \subseteq B(x,r)} \mu_{\bS} \lesssim r^{\alpha}.
\end{equation}
Note that $t_{2} < t_{1}$, and it follows that
\begin{multline*}
W
=
\sup_{1 \leq r \leq R^{1/2}} r^{-1/(n+1)} \sup_{\bO} \Bigl( \sum_{\bI \subset \bO} \bigl( \sum_{\bS \subset \bI} \mu_{\bS}^{t_{2}} \bigr)^{t_{1}/t_{2}} \Bigr)^{1/t_{1}}\\
\leq
\sup_{1 \leq r \leq R^{1/2}} r^{-1/(n+1)} \sup_{\bO} \Bigl( \sum_{\bI \subset \bO} \bigl( \sum_{\bS \subset \bI} \mu_{\bS}^{t_{2}} \bigr) \cdot \sup_{\bI \subset \bO} \bigl( \sum_{\bS \subset \bI} \mu_{\bS}^{t_{2}} \bigr)^{t_{1}/t_{2}-1} \Bigr)^{1/t_{1}}\\
\leq
\sup_{1 \leq r \leq R^{1/2}} r^{-1/(n+1)} \sup_{\bO} \Bigl( \sum_{\bS \subset \bO} \mu_{\bS}^{t_{2}} \Bigr)^{1/t_{1}} \cdot \sup_{\bI \subset \bO} \bigl( \sum_{\bS \subset \bI} \mu_{\bS}^{t_{2}} \bigr)^{1/t_{2}-1/t_{1}}
\end{multline*}
Under the hypothesis \eqref{eq:mu-alpha-dim} with $\alpha\geq 1$ this is
\begin{multline*}
\lessapprox
\sup_{1 \leq r \leq R^{1/2}} r^{1/t_{3}} \Bigl( r (R/r)^{\alpha} \Bigr)^{1/t_{1}} \cdot \bigl( r r^{\alpha} \bigr)^{1/t_{2}-1/t_{1}}\\
=
R^{\alpha/t_{1}} \sup_{1 \leq r \leq R^{1/2}} r^{1/t_{2}+1/t_{3}} r^{\alpha(1/t_{2}-2/t_{1})}
=
R^{\alpha/t_{1}} \sup_{1 \leq r \leq R^{1/2}} r^{1/t-1/2} r^{\alpha(1/2-1/t)}\\
=
R^{\alpha/t_{1}} \sup_{1 \leq r \leq R^{1/2}} r^{(\alpha-1)(1/2-1/t)}
=
R^{\alpha/t_{1}} R^{(\alpha-1)(1/2-1/t)/2},
\end{multline*}
assuming $\alpha \geq 1$.
By Corollary~\ref{cor:fractal-strichartz2} with $t=2$ and the above estimate we obtain
\begin{equation}
\label{eq:max-frac-Schroedinger}
\boxed{\ell^{2}_{\bS \subset \bB} \mu_{\bS} \norm{ u }_{L^{p}(\bS)}
\lessapprox
R^{\alpha/(2(n+1))} \norm{f}_{2}.}
\end{equation}
Up to some uncertainty principle considerations this is the sharp $L^{2}$ estimate for the Schr\"odinger maximal function on sets of dimension $\alpha$ proved in \cite[Theorem 2.2]{arxiv:1805.02775}.
With $\alpha=n=1$ and $t=4$ one can also recover, up to the endpoint, the $L^{4}(\R)$ estimate for the Schr\"odinger maximal function \cite{MR1101221}.
One can rescale estimates on a ball of radius $R$ for functions with Fourier support in the unit ball to estimates on a ball of radius $1$ for functions with Fourier support in a ball of radius $R$.
Summing these estimates one can formulate these estimates also on $H^{s}$ spaces, see \cite{MR2264734}.
\subsection{Lower bounds}
Applying \eqref{eq:max-frac-Schroedinger} with $\alpha=n$ and using parabolic scaling we see that
\begin{equation}
\label{eq:max-Lebesgue-Schroedinger}
\norm{ \sup_{0 < t < 1/R} \abs{e^{it\Delta} f} }_{L^{2}(B^{n}(0,1))}
\lessapprox R^{\frac{n}{2(n+1)}} \norm{f}_{L^{2}(\R^{n})}
\end{equation}
for any function $f$ with $\supp \widehat{f} \subset B(0,R)$.
In this section we will show that this $L^{2}$ bound for the Schr\"odinger maximal function is optimal up to the $R^{\epsilon}$ loss.
To this end we use special solutions considered in \cite{MR2354692} and \cite{MR3613507}.
The lower bound that we will show was first proved in \cite{MR3574661}, but we follow the argument in \cite{arxiv:1703.01360}.
Lower bounds for $L^{2}\to L^{p}$ estimates using the same construction were obtained in \cite{arxiv:1902.01430}.
\subsubsection{Modulation of initial data}
Suppose that $u = e^{it\Delta} f$, or more precisely
\[
u(x,t) = \int \widehat{f}(\xi) e(x\xi + t \abs{\xi}^{2}) \dif\xi.
\]
Modulate $f$ by a frequency $\eta$, so that $f_{\eta}(x) = f(x) e(x\eta)$, and let $u_{\eta} = e^{it\Delta} f_{\eta}$, so that
\begin{align*}
u_{\eta}(x,t)
&=
\int \widehat{f}(\xi-\eta) e(x\xi + t \abs{\xi}^{2}) \dif\xi
\\ &=
\int \widehat{f}(\xi) e(x\xi+x\eta + t \abs{\xi+\eta}^{2}) \dif\xi
\\ &=
e(x\eta + t\abs{\eta}^{2})\int \widehat{f}(\xi) e(x\xi + t \abs{\xi}^{2} + 2 t \xi\eta) \dif\xi
\\ &=
e(x\eta + t\abs{\eta}^{2}) u(x+2t\eta,t).
\end{align*}
So we see that a modulation of the initial data by $\eta$ causes the solution to travel with speed $-2\eta$.
We will construct a solution that is large on some set for many times $t$, and then shift it around using this observation.
\subsubsection{Many wave packets}
We work in dimension $1$.
Fix $0<\sigma<1$.
Let $f$ be given by
\[
\widehat{f_{\mathrm{many}}}(\xi)
=
\widehat{f}(\xi)
=
\sum_{\abs{l} \leq 2R^{\sigma}} \phi(\xi-R^{1-\sigma}l),
\]
where $\phi$ is a smooth positive function with $\phi(0)=1$ supported on a small $\rho$-neighborhood of the origin.
Then
\begin{align*}
e^{i(t/R)\Delta} f(x)
&=
\int \widehat{f}(\xi) e(x \xi + (t/R) \abs{\xi}^{2}) \dif\xi
\\ &=
\sum_{\abs{l} \leq 2R^{\sigma}} \int \phi(\xi-R^{1-\sigma}l) e(x \xi + (t/R) \abs{\xi}^{2}) \dif\xi
\\ &=
\sum_{\abs{l} \leq 2R^{\sigma}} \int \phi(\xi) e(x (\xi+R^{1-\sigma}l) + (t/R) \abs{\xi+R^{1-\sigma}l}^{2}) \dif\xi
\end{align*}
Assume $x=x_{0}+\tilde{x}$ with $x_{0}\in R^{\sigma-1}\Z$, $\abs{x_{0}} \leq 2$, and $\abs{\tilde{x}} \leq R^{-1}/100$.
Assume $t \in R^{2\sigma-1}\Z$ and $\abs{t} \leq 1$.
Then
\begin{align*}
e^{i(t/R)\Delta} f(x)
&=
\sum_{\abs{l} \leq 2R^{\sigma}} \int \phi(\xi) e((x_{0}+\tilde{x}) (\xi+R^{1-\sigma}l) + (t/R) \abs{\xi+R^{1-\sigma}l}^{2}) \dif\xi
\\ &=
\sum_{\abs{l} \leq 2R^{\sigma}} \int \phi(\xi) e(x_{0}\xi + \tilde{x}(\xi+R^{1-\sigma}l) + (t/R) \abs{\xi}^{2} + (t/R) 2\xi R^{1-\sigma}l) \dif\xi
\\ &\sim
R^{\sigma}
\end{align*}
since the phase is small.
\subsubsection{One wave packet}
We still work in dimension $1$.
Let $f$ be given by
\[
\widehat{f_{\mathrm{one}}}(\xi)
=
\widehat{f}(\xi)
=
\phi(R^{-1/2}\xi).
\]
Then, assuming $\abs{x} \leq R^{-1/2}$ and $\abs{t} \leq 1$, we obtain
\[
e^{i (t/R) \Delta} f
=
\int \widehat{f}(\xi) e(x \xi + (t/R) \abs{\xi}^{2}) \dif\xi
\sim
R^{1/2}
\]
since the phase is small.
\subsubsection{Tensor products}
If $u_{j} = e^{it\Delta} f_{j}$, then
\[
u_{1}(x_{1},t) \dotsm u_{n}(x_{n},t)
=
e^{it\Delta} (f_{1}\otimes\dotsm\otimes f_{n})(x_{1},\dotsc,x_{n}).
\]
We combine the previous examples by taking a tensor product:
\[
f = f_{\mathrm{one}} \otimes f_{\mathrm{many}} \otimes \dotsm \otimes f_{\mathrm{many}}.
\]
Then the solution $u = e^{i(t/R)\Delta} f$ is $\sim R^{1/2 + (n-1)\sigma}$ on the set
\begin{equation}
\label{eq:supp-u}
(-R^{1/2},R^{1/2}) \times \Bigl( \bigl( R^{\sigma-1}\Z \cap (-2,2) \bigr) + (-R^{-1}/100,R^{-1}/100) \Bigr)^{n-1} \times \Bigl( R^{2\sigma-1}\Z \cap (0,1) \Bigr).
\end{equation}
We modulate $f$ by the frequency $\eta = -\frac12 (R, R^{-2\sigma}, R^{-3\sigma},\dotsc, R^{-n\sigma})$.
The absolute value of the new solution is then given by $\abs{u(x+2\eta t, t)}$.
We subdivide time into intervals of length $R^{-1/2}$.
The shifts of \eqref{eq:supp-u} by times from non-adjacent time intervals are then essentially disjoint in the first coordinate.
The other coordinates of $\eta$ are chosen in such a way that increasing the time by $R^{2\sigma-1}$ moves the $2$nd coordinate by $R^{-1}$.
After $R^{\sigma}$ time steps the $2$nd coordinate is shifted by $R^{\sigma-1}$, and the $3$rd coordinate by $R^{-1}$.
After $R^{(n-1)\sigma}$ time steps the shifts of $R^{-1}/100$-cubes then cover a positive proportion of the fundamental domain modulo $R^{\sigma-1}$ in coordinates $x_{2},\dotsc,x_{n}$.
\begin{center}
\includegraphics[height=3cm]{luca-rogers-example.png}
\end{center}
Choosing $\sigma=\frac{1}{2(n+1)}$ we see that $R^{(n-1)\sigma}$ time steps of length $R^{2\sigma-1}$ add up to a time interval of length $R^{-1/2}$.
Moreover, the total shift over the time interval $(0,1)$ in coordinates $x_{2},\dotsc,x_{n}$ is bounded by $R^{-2\sigma} \ll 1$.
Hence the new solution is $\sim R^{1/2 + (n-1)\sigma}$ on a set of measure $\sim 1$.
Also, $\norm{f}_{2} \sim R^{(1/2+(n-1)\sigma)/2} \sim R^{n/(2(n+1))}$.
Hence if \eqref{eq:max-Lebesgue-Schroedinger} holds with exponent $s$ in place of $\frac{n}{2(n+1)}$ we obtain
\[
R^{1/2 + (n-1)\sigma} \lesssim R^{s} R^{n/(2(n+1))},
\]
so
\[
s \geq n/(2(n+1)).
\]
\begin{remark}
In \cite{arxiv:1902.01430} the same kind of example with
\[
f = f_{\mathrm{one}}^{\otimes (n-m+1)} \otimes f_{\mathrm{many}}^{\otimes (m-1)},
\quad 1 \leq m \leq n,
\]
is used.
\end{remark}